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1 Introduction

First the definition of refinability:

Definition 1.1 A function f : R → C is 2-refinable if

f(x) =
N∑

l=0

clf(2x− l) (1)

where cl ∈ C ∀ l ∈ {0, . . . , N}

Strictly speaking we should allow the sum to extend over any finite set of
integers, but by translating f we may obtain the form (1) with c0 6= 0 and
cN 6= 0.
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In particular we will be interested in the refinability of step functions
f : R → C,

f(x) =
N∑

l=1

klχ[l−1,l) (2)

where N ∈ {1, 2, 3, . . .} and kl is a complex number ∀ l ∈ {1, . . . , N}

Without loss of generality we can assume k1 6= 0 and kN 6= 0. The proof
of Theorem 2.1 shows that the value of N must be the same in (1) and (2).
For clarity of exposition we assume this from the start. For simplicity, we
will assume k1 = 1, since any multiple of a solution to (1) is also a solution.

A simple example of a refinable step function is f(x) = χ[0,1) − χ[1,2) where
f(x) = f(2x) + 2f(2x− 1) + f(2x− 2)

We will be looking at these functions from an algebraic standpoint as well
as their Fourier transforms. In particular, we will examine the relationships
between three sets of data that determine these functions: the values that
the function takes (the kl’s), the function’s refinability constants (the cl’s),
and the function’s Fourier transform. Using these relations we will come up
with a complete classification of these functions.

It should be noted that the result of section 2 is contained in a more general
result given in [4]. However, the result given here is obtained in a simpler
manner. Furthermore, the results of section 3 are new as are the tables given
in section 4.

I would like to thank Bob Strichartz for all the help and guidance he has
given me throughout the past year concerning this paper. Furthermore, I
would also like to thank David Larson for his help with this research as
well as Texas A&M University and the NSF for funding me during the 2003
Research Experience for Undergraduates.

2



2 Classifying Piecewise Constant Functions that
are Refinable

The most straightforward way to start classifying refinable step functions is
to look at the set of 2N algebraic equations that must necessarily be satisfied.
Assuming that f satisfies equations (1) and (2), this set of equations is

for equation n, 1 ≤ n ≤ N ,

kdn/2e =
n∑

l=1

cl−1kn−l+1 (3)

and for N < n ≤ 2N

kdn/2e =
2N−n+1∑

l=1

cN−l+1kn−N+l−1 (4)

Using a normalization k1 = 1 one has 2N equations and 2N variables
(k2, ..., kN and c0, ..., cN ). Using equations 1 and 2N , one can see that c0 = 1
and cN = 1. Furthermore, using just the first N equations, we can see that
the c’s determine the k’s when assuming k1 = 1.

kn = kdn/2e − (c1kn−1 + . . . + cn−1k1) 2 ≤ n ≤ N

Also, the k’s determine the c’s, c0 = cN = 1

cn = kd(n+1)/2e − (kn+1 + c1kn + . . . + cn−1k2) 1 ≤ n ≤ N + 1

We will now define the Fourier Transform, F , dilation, Dj , and translation,
T j , of a function f as follows

F(f(x)) = f̂(x) = 1√
2π

∫∞
−∞ f(t)e−ixtdt

Dj(f(x)) = f(2jx)

2j/2

T j(f(x)) = f(x− j)

Theorem 2.1 Let p ∈ C [z], where C [z] is defined as the set of all complex
polynomials. Also, we restrict z = e−ix, x ∈ R. Then p(z)

ix
√

2π
is the Fourier

Transform of a refinable step function if and only if ∃ q ∈ C [z] such that
p(z2)/p(z) = q(z) and 1 is a zero of p(z).
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Proof. Assume that f satisfies equations (1) and (2). Equation (1) implies

f(x/2) =
N∑

l=0

clf(x− l)

1√
2
D−1(f(x)) =

N∑
l=0

clT
l(f(x))

Note that D̂ = D−1 and T̂ l = Me−ilx (mulitply by e−ilx) Therefore taking
the Fourier transform of both sides gives for the left hand side

F(
1√
2
D−1(f(x))) = F(f(x/2)) = 2f̂(2x)

and for the right hand side

F(
N∑

l=0

clT
l(f(x))) = (

N∑
l=0

cle
−ilx)f̂(x) = m(x)f̂(x)

where m(x) =
∑N

l=0 clz
l, z = e−ix, and thus m(x) ∈ C[z]. Equating both

sides and dividing by f̂(x) gives

f̂(2x)
f̂(x)

=
1
2
m(x) (5)

Equation (2) implies

f̂(x) =
1√
2π

N∑
l=1

kl

∫ l

l−1
e−ixtdt

=
−1

ix
√

2π
(

N∑
l=1

kl(zl − zl−1))

=
−p(z)
ix
√

2π

where

p(z) =
N∑

l=1

kl(zl − zl−1) = (z − 1)
N∑

l=1

klz
l−1 (6)

Thus p(z) has 1 as a zero and from equation (5) we know

p(z2)
p(z)

= m(x) = q(z) (7)
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The converse is obtained by simply taking the inverse Fourier transform of
p(z)

ix
√

2π
, which will give one a piecewise constant function. Thus the Fourier

transform of this function satisfies equation (5) and one gets that it is refin-
able. QED.

An important thing to note from the proof of this theorem is that the co-
efficients of p(z)

z−1 are the values that function takes, while the coefficients of
q(z) are the refinement constants.

Theorem 2.2 Let p ∈ C [z]. Then p(z) satisfies the conditions of Theorem
2.1 if and only if a.) for every zero, λ, of p(z) with multiplicity m, then λ2

is also a zero with multiplicity ≥ m; and b.) 1 is a zero of p(z).

Proof. Since p(z) is of degree N , write p(z) in terms of its distinct zeroes
{λ1, . . . , λn}, n ≤ N , each with multiplicity ml

p(z) = kN

n∏
l=1

(z − λl)ml

Furthermore, since p(z) satisfies equation (4) we know that

p(z2)
p(z)

=
kN

∏
(z2 − λl)ml

kN
∏

(z − λl)ml
= q(z) ∈ C[z]

Therefore each multiplicative term in denominator must cancel with a term
in the numerator and the theorem is proved. QED.

Furthermore, as a consequence of the lemma, we know that λl = e
2πi p

q where
p and q are integers.

In summary, a refinable step function is determined by either K = {k1, . . . , kN},
C = {c0, . . . , cN}, or the roots of p(z), Λ = {λ1, . . . , λn}. Given any one of
these sets, we can compute the other two sets.

K → p(z) which gives Λ by (6) → p(z2)
p(z) which gives C by (7)

C → equations (3) and (4) which gives K

Λ → kN
1

z−1

∏
(z − λl)ml where −1 = kN

∏
(−λl)ml which then gives K by

(6)
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Theorem 2.2 characterizes the possible sets Λ

3 Miscellaneous Properties of Refinable Step Func-
tions

Theorem 3.1 For any refinable step function, the refinement coefficients
satisfy the following property

cl = cN−l ∀ l ∈ {0 . . . bN/2c}

Proof. Let Γ = {γ1, . . . , γN} be the zeroes (not necessarily distinct) of
p(z2)
p(z) . Thus we have

p(z2)
p(z)

=
N∏

l=1

(z − γl) =
N∑

l=0

σl(Γ)zl =
N∑

l=0

clz
l

where σl(Γ) are the elementary symmetric functions.

σ0(Γ) = γ1γ2 · · · γN

σ1(Γ) =
∑N

l=1 γ1γ2 · · · γl−1γl+1 · · · γN where γ0 = γN+1 = 1
...

σN−1(Γ) =
∑N

l=1 γl

σN (Γ) = 1

Since cl = σl(Γ) and c0 = 1 we have γ1γ2 · · · γN = 1. Furthermore, since
|γl| = 1, γ−1

l = γl. Combining the last two statements gives σl(Γ) = σN−l(Γ)
and thus cl = cN−l. QED.

We can also distinguish which polynomials give rise to real valued functions.

Theorem 3.2 Let f be a refinable step function that’s Fourier transform is
p(z)

ix
√

2π
. Then f is real valued if and only if for every zero eiθ of p(z) with

multiplicity m, e−iθ is a zero as well with the same multiplicity.
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Proof. Assume for p(z) that for every zero eiθ with multiplicity m, e−iθ is
a zero as well with the same multiplicity. Then for each such pair, one gets

(z − eiθ)m(z − e−iθ)m = (z2 − (eiθ + e−iθ)z + 1)m = (z2 − 2 cos θz + 1)m

Thus the coefficients of f are real, so f is real valued.

Now assume f is real valued. Thus {k1, . . . , kN} are all real numbers.
Assume that eiθ is a zero of p(z), for eiθ 6= ±1. Since (z − eiθ) divides
p(z) = (z − 1)

∑N
l=1 klz

l−1, this gives
∑N

l=1 kle
(l−1)iθ = 0. Since the kl’s are

real numbers, when we take the complex conjugate we obtain p(e−iθ) = 0.
Similarly, by considering derivatives of p, we can show that the multiplicities
are equal. QED.

We can further classify the real valued functions as either even or odd, and
can determine when for each.

Theorem 3.3 Let f be a real valued refinable step function. Then f must be
either an even or odd function about N/2. In particular, if

a.) N=2m

The multiplicity of the zero -1 is odd ⇔ f is an even function about N/2

The multiplicity of the zero -1 is even ⇔ f is an odd function about N/2

b.) N=2m+1

The multiplicity of the zero -1 is odd ⇔ f is an odd function about N/2

The multiplicity of the zero -1 is even ⇔ f is an even function about N/2

Proof. First we see that kN = ±1 (assuming k1 = 1) by writing p(z) in
terms of its zeros (for this proof each λl is not necessarily distinct)

p(z) = kN

N∏
l=1

(z − λl) = kN (zN + . . . + (−1)Nλ1 · · ·λN )

= kN (z − 1)(zN−1 + · · · (−1)N−1λ1 · · ·λN )
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By Theorem 3.2 we know that λ1 · · ·λN = ±1. Therefore,

k1 = (−1)N−1kNλ1 · · ·λN = ±kN = 1

In particular, if N = 2m, then if the multiplicity of the zero -1 is even,
then kN = −1 and if the multiplicity of the zero -1 is odd, then kN = 1. If
N = 2m + 1, then if the multiplicity of the zero -1 is even, then kN = 1 and
if the multiplicity of the zero -1 is odd, then kN = −1. The converses easily
follow by using the same logic backwards. We now complete the proof that
f must be an even or odd function about N/2.

From equations (3) and (4) with n = 1 and n = 2N − 1 we have

c1k1 + c0k2 = k1 and cN−1kN + cNkN−1 = kN

c1 =
k1 − k2

k1
and cN−1 =

kN − kN−1

kN

By Theorem 3.1 we have c1 = cN−1 and thus

k1 − k2

k1
=

kN − kN−1

kN

k1kN−1 = k2kN

k1

kN
=

k2

kN−1

Thus k2
kN−1

= ±1. Using both ratios and equations (3) and (4) with n = 2

and n = 2N − 2 we get k3
kN−2

= k1
kN

= ±1. Continue this process until one
gets that all the ratios are equal, and thus f must either be even or odd.
QED.

4 Sets of Refinable Step Functions

These tables were computed using the system of algebraic equations detailed
in section 2 and solving them in MATLAB.
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Table 1: Corresponding Sets of K, C, and Λ of Refinable Step Functions for
N=3
k1, k2, k3 c0, c1, c2, c3 values of t for which p(e2πit) = 0
1, 0, -1 1, 1, 1, 1 0, 0, 1

2

1, 1, 1 1, 0, 0, 1 0, 1
3 , 2

3

1, -2, 1 1, 3, 3, 1 0, 0, 0
1, 1+i, i 1, -i, i, 1 0, 1

4 , 1
2

1, 1-i, -i 1, i, -i, 1 0, 1
2 , 3

4
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Table 3: Corresponding Sets of K, C, and Λ of Refinable Step Functions for
N=5 (Real Valued functions only)
k1, k2, k3, k4, k5 c0, c1, c2, c3, c4, c5 values of t for which p(e2πit) = 0
1, 0, 1, 0, 1 1, 1, -1, -1, 1, 1 0, 1

6 , 1
3 , 2

3 , 5
6

1, 0, -2, 0, 1 1, 1, 2, 2, 1, 1 0, 0, 0, 1
2 , 1

2

1, 1, 1, 1, 1 1, 0, 0, 0, 0, 1 0, 1
5 , 2

5 , 3
5 , 4

5

1, -4, 6, -4, 1 1, 5, 10, 10, 5, 1 0, 0, 0, 0, 0
1, -1, 0, -1, 1 1, 2, 1, 1, 2, 1 0, 0, 0, 1

3 , 2
3

1, 2, 3, 2, 1 1, -1, 1, 1, -1, 1 0, 1
3 , 1

3 , 2
3 , 2

3

1, 0, 0, 0, -1 1, 1, 0, 0, 1, 1 0, 0, 1
4 , 1

2 , 3
4

1, 1, 0, -1, -1 1, 0, 1, 1, 0, 1 0, 0, 1
3 , 1

2 , 2
3

1, -2, 0, 2, -1 1, 3, 4, 4, 3, 1 0, 0, 0, 0, 1
2
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