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Abstract

In this paper, we study the weak order of Coxeter systems and the combinatorial
properties of descent sets. There are three main results: (1) Given a Coxeter system
(W,S), some word v ∈W , some subset A ⊆ S disjoint from DR(v), and some w ∈WA,
we proved that DR(vw) ⊆ DR(v) ∪ A. (2) We obtained an explicit map for A ∪ B
to dominate B in the case when A,B are commuting disjoint sets, with B finite.
(3) We proved that for finite Coxeter systems (W,S), with subsets A,B ⊆ S, if A
dominates B, then B ⊆ A. In particular, the third result is a generalization of a
proposition in [K. Nyman, E. Swartz, Inequalities for the h-vectors and flag h-vectors
of geometric lattices, Discrete Comput. Geom. 32 (2004) 533-548], while the second
result gives a partial answer to one of the problems posed in [E. Swartz, g-elements,
finite buildings and higher Cohen-Macaulay connectivity, J. Combin. Theory Ser. A
113 (2006) 1305-1320]. Also, this paper develops the theory of sequences of braid
moves, boundary pairs, and tagging letters in reduced expressions for the general
Coxeter system (W,S). A side application of inversion tables also yield an explicit
formula of a reduced expression for all words in Coxeter systems of type An. All these
results are new.
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Introduction

As the title suggests, this paper is about the weak order of Coxeter systems and
the combinatorial properties of descent sets. However, the motivation behind this
paper is very different in nature, and in this introduction, we shall first give a brief
historical overview. All terms and notations in this introduction will be defined in
later chapters.

In 1997, Chari introduced the notion of a convex ear decomposition [Cha97] and
proved that if ∆ is a (d−1)-dimensional simplicial complex with a convex ear decom-
position, then the h-vector of ∆ must satisfy the inequalities hi−1 ≤ hi and hi ≤ hd−i

for all i ≤ bd
2c. In 2004, Nyman and Swartz [NS04] proved that the order complex

of a geometric lattice has a convex ear decomposition, hence Chari’s result implies
the h-vector inequalities for geometric lattices. Using Björner’s result, which states
that the flag h-vector hS(P ) of a graded poset P admitting an R-labelling counts the
number of maximal chains of P with labels having descent set S (See Theorem 2.7,
[Bjo80]), Nyman and Swartz also proved (in the same paper [NS04]) that given sets A
and B, A dominates B implies the flag h-vector inequality hB ≤ hA for all geometric
lattices.

In 2005, the work in [NS04] was slightly extended by DeVries, a former Cornell stu-
dent, as part of his senior thesis project [DeV05]. DeVries worked on finding explicit
injections for A to dominate B, and trying two different approaches, he showed that
both approaches do not yield the desired injections. DeVries also proved two special
cases of Conjecture 5.7 in [NS04], and verified the original conjecture for all cases
r ≤ 9, the previous record being r ≤ 8 in [NS04].

In 2006, Schweig studied the convex ear decompositions of posets in relation to the flag
h-vectors as part of his PhD thesis in [Sch08]. He proved that the order complex of a
rank-selected subposet of a geometric lattice admits a convex ear decomposition, hence
extending Nyman and Swartz’s result in [NS04]. Schweig also proved that the rank-
selected subposets of supersolvable lattices with nowhere-zero Möbius function and
the rank-selected subposets of face posets of Cohen-Macaulay simplicial complexes
have order complexes that admit convex ear decompositions [Sch08]. Consequently,
applying Chari’s result [Cha97], he obtained the flag h-vector inequalities analogous
to those obtained in [NS04]. These inequalities involve descent sets and the notion of
A dominating B for sets A and B.

Also in 2006, Swartz [Swa06] studied finite buildings and proved that if ∆ is a finite
building of type (W,S), and if A,B ⊆ S such that A dominates B, then hB ≤ hA.
Again, we get a connection between descent sets of Coxeter systems and another area,
this time being the theory of finite buildings.

Chari’s result on convex ear decomposition relies on a deep result by Stanley [Sta80],
which involves the hard Lefschetz Theorem from algebraic geometry. This means the
above results involving inequalities of the h-vector are all indirectly dependent on the
Lefschetz Theorem. It would then be very desirable to be able to give a combinatorial
proof to the inequalities of the flag h-vector and avoid using the Lefschetz Theorem,
hence providing a combinatorial proof to all the above-mentioned results.
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Motivated by the results on dominating sets in [NS04], we study the descent sets
of general Coxeter systems, hoping to get a complete characterization of when A
dominates B via a combinatorial proof. If we can get such a characterization in
the general case of Coxeter systems, then applying to the Coxeter systems of type
An, there is an implied combinatorial proof at least for the flag h-vector inequalities,
without having to rely on the Lefschetz Theorem.

Although we are unable to give a complete characterization in this paper, we are
able to derive an explicit map for A ∪ B to dominate B in the case when A,B are
commuting disjoint sets, with B finite (proven as Theorem 4.2.1 in the setting of
general Coxeter systems). This map is derived from another result we proved, which
states that given a Coxeter system (W,S), if v ∈ W , and A ⊆ S is some subset
disjoint from DR(v), then w ∈WA implies DR(vw) ⊆ DR(v)∪A. Also, we prove that
for finite Coxeter systems, A dominates B implies B ⊆ A (proven as Theorem 4.2.2),
hence generalizing Proposition 5.4 in [NS04], which is the special case of our result
for Coxeter systems of type An. Our results also gives a partial answer to Problem
2.5 proposed in [Swa06].

In the process of deriving these results, we developed the theory of sequence of braid
moves, coining the term “boundary pairs”, and we introduced the idea of tagging an
element in a reduced expression of a Coxeter group. All of the discussion is made
with the aim of applying to descent sets of Coxeter systems. Most of the results in
Chapter 3 are new, and all of the results in Chapter 4 are new, which we apply to
settle previously unsolved problems. A lot of these results involve the careful study
of reduced expressions of words in Coxeter systems, in particular, how the various
letters of a reduced expression are changed in a sequence of braid moves, and the
ideas involved are purely combinatorial.

In this paper, we have set aside Chapters 1 and 2 to develop the necessary theory
needed to explain the results obtained in Chapters 3 and 4. Chapter 5 is an exposition
on the applications of our results to the recent work that was briefly discussed above.
As a side, we also give a treatment of how inversion tables can be applied to Coxeter
systems in Chapter 1.3, and we derive an explicit formula of a reduced expression for
all words in Coxeter systems of type An.

For notations, we adopt the notations used in [BB05] as far as possible. In particular,
for any n ∈ Z+, [n] denotes the set of positive integers {1, . . . , n}. Each result (propo-
sition, theorem, corollary, lemma) is numbered consecutively within the sections. The
symbol � denotes the end of a proof of a result.
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Chapter 1

Preliminaries

The notion of Coxeter systems was first introduced around 1960 by Jacques Tits as an
abstraction of finite reflection groups in geometry. Humphreys gives a good discussion
in [Hum92] on how the theory of Coxeter groups can be motivated from the theory of
reflection groups, from an algebraic and geometric perspective. In this paper, we give
a combinatorial perspective, and much of the basic properties of Coxeter systems we
will discuss follow closely the treatment of the combinatorics of Coxeter groups given
in [BB05].

In this chapter, we present the basic notations and combinatorial properties of Coxeter
groups. In particular, we will introduce the notion of inversion tables and descent sets,
and relate the combinatorics of inversion tables and descent sets to the combinatorial
properties of Coxeter groups.

1.1 Coxeter Systems

Definition. Let S be a set. A matrix M : S×S → Z+∪{∞}, with m(s, s′) denoting
the (s, s′)-th entry of M , is a Coxeter matrix if M is a symmetric matrix satisfying

m(s, s′) = 1⇔ s = s′. (1.1)

This matrix M can be represented by a Coxeter diagram, which is a graph with vertex
set S, and whose edges are the unordered pairs {s, s′} satisfying m(s, s′) ≥ 3. By
convention, if m(s, s′) ≥ 4, we label the edge {s, s′} by m(s, s′). The Coxeter group
of type M is the group W (M) given by the presentation

W (M) = 〈S | (ss′)m(s,s′) = e,m(s, s′) 6=∞〉, (1.2)

where e denotes the identity element of W (M). For brevity, we write W instead of
W (M), and it is tacitly understood that W corresponds to a Coxeter matrix M . The
pair (W,S) is called a Coxeter system of type M . S is the set of Coxeter generators of
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CHAPTER 1. PRELIMINARIES 7

(W,S), or more briefly, the set of generators for W . The cardinality of S is called the
rank of (W,S). The system is irreducible if its Coxeter diagram is connected. Also, if
W is finite, then we say the Coxeter system (W,S) is finite.

Example 1.1.1. For the set S = {s1, s2, s3, s4}, we have the following correspondence
between a possible Coxeter matrix with its Coxeter diagram:

1 ∞ 2 2
∞ 1 3 5
2 3 1 2
2 5 2 1

 ←→
◦ ◦∞
s1

◦s2 s3

s4◦
5

It is obvious from the definition that up to isomorphism, there is a one-to-one cor-
respondence between Coxeter matrices and Coxeter diagrams. Although it is also
true that up to isomorphism, there is a one-to-one correspondence between Coxeter
matrices and Coxeter systems, this is not immediately obvious. For a proof, see the
remark after Theorem 4.1.3 in [BB05].

In view of these correspondences, there is no ambiguity when referring to the corre-
sponding Coxeter matrix and the corresponding Coxeter diagram of a Coxeter system
(W,S), so the above definition of irreducible Coxeter systems makes sense. In par-
ticular, for a given fixed Coxeter matrix M , any two Coxeter systems of type M are
necessarily isomorphic, so it makes sense to talk about the Coxeter system (W,S) of
type M . This implies any two Coxeter groups of type M are also isomorphic, so it
also makes sense to talk about the Coxeter group of type M . However, we add a word
of caution that for any two isomorphic Coxeter groups, it is not necessarily true that
they correspond to isomorphic Coxeter systems. See [BB05] for more details.

The notion of ‘type’ for a Coxeter system suggests there are different types of Cox-
eter systems. Indeed, all the information about a Coxeter system can be derived
from its corresponding Coxeter matrix, and this information is encoded in the Cox-
eter diagram, so we can classify Coxeter systems according to the structure of their
corresponding Coxeter diagrams.

One important class of examples are Coxeter systems of type An (n ∈ Z+), where An

denotes the n × n matrix whose diagonal entries are all 1, whose entries adjacent to
the diagonal entries are all 3, and whose other entries are all 2. More explicitly, for
every i, j ∈ [n], the (i, j)-th entry of An is given by

An(i, j) =


1, if i = j

3, if |i− j| = 1
2, otherwise

.

Proposition 1.1.2. The symmetric group Sn+1 of degree n+1 is the Coxeter group
of type An.

Proof: For each i ∈ [n], let si be the transposition (i, i + 1) in Sn+1. We easily check
that S = {s1, . . . , sn} is a set of generators for Sn+1, such that every pair (si, sj) ∈
S × S satisfies (sisj)An(i,j) = Id, the identity permutation in Sn+1, so (Sn+1, S)
is a Coxeter system of type An. Consequently, by the remark before Example ??,
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(Sn+1, S) is the Coxeter system of type An, and in particular, Sn+1 is the Coxeter
group of type An. For an alternative proof, see (Proposition 1.5.4, [BB05]). �

We remark that the notation of ‘type An’ used in referring to the symmetric group
Sn+1 is standard in the literature of Coxeter groups. In fact, there is a complete
classification of all finite irreducible Coxeter systems, and a classification table can
be found in Appendix A. We shall henceforth adopt the standard notation in the
classification table when referring to finite irreducible Coxeter systems. For a proof
of this classification theorem, see (Chapters 2, 6 in [Hum92]).

Definition. Let n ∈ Z+ be given. For each k ∈ [n], denote sk as the transposition
(k, k+1) in the symmetric group Sn+1, and let S = {s1, . . . , sn}. Note that (Sn+1, S)
is a Coxeter system by Proposition 1.1.2. We shall then denote (Sn+1, S) as the
standard Coxeter system of Sn+1.

For the rest of the paper, we denote (W,S) as a Coxeter system (not necessarily finite)
with corresponding Coxeter matrix M = (m(s, s′))s,s′∈S , unless otherwise stated.
The case when |S| = 1 is trivial and uninteresting, so we shall assume |S| ≥ 2. In
particular, we allow for S to be infinite. Note that (1.1) implies s2 = e for all s ∈ S,
so in the case when m(s, s′) 6= ∞, the relation (ss′)m(s,s′) = e in the presentation
(1.2) is equivalent to

ss′ss′s · · ·︸ ︷︷ ︸
m(s,s′)

= s′ss′ss′ · · ·︸ ︷︷ ︸
m(s′,s)

. (1.3)

In particular, the generators s and s′ commute if and only if m(s, s′) = 2, or equiv-
alently, if and only if s, s′ are distinct non-adjacent vertices in the corresponding
Coxeter diagram.

Definition. The elements of the Coxeter group W are called words. The generators
of W (i.e. elements in S) are also called letters, and we shall use the terms ‘letters’
and ‘generators’ interchangeably. Denote the set T = {wsw−1 : s ∈ S, w ∈ W}. The
elements of T are called reflections. Also, the elements of S ⊆ T are called simple
reflections.

Definition. Every word w ∈W can be written as a finite product of generators w =
s1s2 · · · sk, where si ∈ S are not necessarily distinct. This finite product s1s2 · · · sk

is called an expression for w. For any given expression wi for the word w, we say
the expression has expression length k (denoted by ˜̀(wi) = k) if there are k (not
necessarily distinct) letters appearing in the expression. In particular, the expression
s1s2 · · · sk has expression length k. If wi = s1s2 · · · sk is an expression for w such
that ˜̀(wi) is minimized among all possible expressions wi for w, then ˜̀(wi) = k is
called the length of w (denoted by `(w) = k), and the expression s1s2 · · · sk is called
a reduced expression (or reduced decomposition or reduced word) for w. Alternatively,
we say s1s2 · · · sk is reduced. By default, the empty product (i.e. k = 0) is necessarily
reduced, and it refers to the identity element e, with length `(e) = 0. We shall denote
R(w) as the set of all reduced expressions of w.

Let F (S) denote the free group generated by S, and let i : S → F (S) be the natural
inclusion map. From (1.2), we get W ∼= F (S)/N , where N is the normal subgroup
of F (S) generated by {(ss′)m(s,s′) : m(s, s′) 6=∞}. Let q : F (S)→W be the natural
quotient map. At this stage, it is appropriate to remark that there is a distinction



CHAPTER 1. PRELIMINARIES 9

between words and expressions. An expression s1 · · · sk for the word w refers to an
element s1 · · · sk in F (S) such that q(s1 · · · sk) = w. Strictly speaking, a word w is
an equivalence class of expressions. We shall reserve the usage of u, v, w to represent
words in W , and in cases where the specific choice of expression does not matter, there
is no confusion of referring u, v, w as both words and expressions interchangeably. In
particular, for s1, . . . , sk ∈ S, ws1 · · · sk can be referred to either as a word, or an
expression, depending on the context given.

However, to avoid any possible confusion, when we attach subscripts ui, vi, wi, we shall
always mean that ui, vi, wi are specific expressions of the words u, v, w respectively.
In particular, for any u, v ∈ W , and any expressions ui, vi of u, v respectively (not
necessarily reduced), we denote uivi as the expression formed by concatenating the
expressions ui and vi, and we denote uv as the word represented by the expression
uivi. This distinction becomes important in Chapters 3 and 4.

Note that the expression length function ˜̀ depends on the expression given. For
example, the expressions ss, ssss, ssssss have expression lengths 2, 4, 6 respectively.
Fortunately, the length of a word w ∈W does not depend on the choice of expression,
and in our example, ss, ssss, ssssss all represent the same word e, so we have `(ss) =
`(ssss) = `(ssssss) = 0. One obvious consequence is that for any expression wi, we
always have `(wi) ≤ ˜̀(wi). Before we derive some properties of the length function,
we prove a useful lemma.

Lemma 1.1.3. The map ε0 : s 7→ −1 for all s ∈ S, extends to a group homomorphism
ε : W → {±1}.

Proof: By the universal property of free groups and the universal property of quotient
groups, there exist unique group homomorphisms φ : F (S) → {±1} and ε : W →
{±1} such that the following diagram commutes:

S

ε0
!!B

BB
BB

BB
B

i // F (S)

φ

��

q
// W

ε
}}zz

zz
zz

zz

{±1}

�

Definition. Given a Coxeter system (W,S), the group homomorphism ε defined in
Lemma 1.1.3 is called the sign representation of (W,S).

For any w ∈W , an immediate consequence of Lemma 1.1.3 is the following identity

ε(w) = (−1)`(w), (1.4)

which allows us to derive the following basis properties of the length function.

Proposition 1.1.4. For all k ∈ Z+, u, v, w ∈W, s, s1, . . . , sk ∈ S, the following hold:

(i) `(uw) ≡ `(u) + `(w) (mod 2),

(ii) `(ws) = `(w)± 1,
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(iii) `(sw) = `(w)± 1,

(iv) `(w−1) = `(w),

(v) `(w)− k ≤ `(ws1 · · · sk) ≤ `(w) + k,

(vi) `(w)− k ≤ `(s1 · · · skw) ≤ `(w) + k,

(vii) |`(u)− `(v)| ≤ `(uv) ≤ `(u) + `(v).

Proof: By considering ε(uw) = ε(u)ε(w), ε(ws) = ε(w)ε(s), εsw = ε(s)ε(w), parts
(i),(ii) (iii) are direct consequences of (1.4). For part (iv), let si1 · · · sik

∈ R(w).
Since (si1 · · · sik

)sik
· · · si1 = e, we have sik

· · · si1 is by definition an expression for
w−1, so `(w−1) ≤ k. Let sj1 · · · sjk′ ∈ R(w−1), where k′ = `(w−1) ≤ k. Since
(sj1 · · · sjk′ )sjk′ · · · sj1 = e, we have sjk′ · · · sj1 is by definition an expression for
(w−1)−1 = w, so k = `(w) ≤ k′, and (iv) follows. By an inductive argument,
part (ii) easily implies (v). In particular, `(w) − k = `(ws1 · · · sk) if and only if
`(ws1 · · · st) = `(ws1 · · · st−1) − 1 for all t ∈ [k], and `(w) + k = `(ws1 · · · sk) if and
only if `(ws1 · · · st) = `(ws1 · · · st−1) + 1 for all t ∈ [k]. An application of parts (iv)
and (v) gives (vi). Finally, to show part (vii), if `(u) ≥ `(v), then (vii) is an appli-
cation of part (v), with w = u, s1 · · · sk ∈ R(v), and if `(u) < `(v), then (vii) is an
application of part (vi), with w = v, s1 · · · sk ∈ R(u). �

In particular, following the proof of part (iv) above, we get:

s1 · · · sk ∈ R(w)⇔ sk · · · s1 ∈ R(w−1). (1.5)

Note also that parts (i) and (iv) above imply `(wsw−1) ≡ 1 (mod 2) for all w ∈
W, s ∈ S, so by the definition of T , all reflections have odd lengths. These basic
properties will be used repeatedly in the rest of the paper.

1.2 Exchange Property and Deletion Property

The Exchange Property and the Deletion Property are two fundamental combinato-
rial properties of Coxeter systems, and in fact characterize all Coxeter systems. In
this section, we shall mainly state the relevant results and discuss some of their conse-
quences. Most of the proofs are omitted, and we refer the interested reader to [BB05]
for detailed proofs of these results.

We remark that there is a ‘stronger’ version for the Exchange Property, known as
the Strong Exchange Property. Although the Exchange Property is a special case of
the Strong Exchange Property, we shall see in Theorem 1.2.4 that they are in fact
equivalent characterizations of Coxeter systems.

Theorem 1.2.1. (Strong Exchange Property) Let w ∈W be a given word, and
let s1 · · · sk be an expression (not necessarily reduced) for w. If `(tw) ≤ `(w) for some
t ∈ T , then tw = s1 · · · ŝi · · · sk for some i ∈ [k]. Similarly, if `(wt′) ≤ `(w) for some
t′ ∈ T , then wt′ = s1 · · · ŝj · · · sk for some j ∈ [k].
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Proof: `(t) is odd by the remark after (1.5), so Proposition 1.1.4 implies `(tw) and
`(w) have different parities, which means `(tw) < `(w). (Theorem 1.4.3, [BB05]) then
gives the first assertion, and applying Proposition 1.1.4 to the first assertion, we get
the second assertion. �

Corollary 1.2.2. (Exchange Property) Let w ∈ W be a given word, and let
s1 · · · sk be a reduced expression for w. If `(sw) ≤ `(w) for some s ∈ S, then sw =
s1 · · · ŝi · · · sk for some i ∈ [k]. Similarly, if `(ws′) ≤ `(w) for some s′ ∈ S, then
ws′ = s1 · · · ŝj · · · sk for some j ∈ [k].

Proof: This is a special case of Theorem 1.2.1. �

Theorem 1.2.3. (Deletion Property) Let w ∈W be a given word, and let s1 · · · sk

be an expression such that `(w) < k, then w = s1 · · · ŝi · · · ŝj · · · sk for some distinct
i, j ∈ [k].

Proof: See (Proposition 1.4.7, [BB05]). �

Temporarily dropping the assumption that (W,S) is a Coxeter system, let W be an
arbitrary group with identity element e, let S be a set of generators for W such that
s2 = e for all s ∈ S, and denote T = {wsw−1 : s ∈ S, w ∈ W}. The notions of
expression, length `(w), w ∈W , and reduced expression s1 · · · sk, si ∈ S can be defined
analogously as earlier. Under these conditions, we make the following definitions:

Definition. Given any w ∈W and any expression s1 · · · sk (not necessarily reduced)
for w, if `(tw) ≤ `(w) for any t ∈ T implies tw = s1 · · · ŝi · · · sk for some i ∈ [k], then
we say (W,S) has the Strong Exchange Property.

Definition. Given any w ∈W and any reduced expression s1 · · · sk for w, if `(sw) ≤
`(w) for any s ∈ T implies sw = s1 · · · ŝi · · · sk for some i ∈ [k], then we say (W,S)
has the Exchange Property.

Definition. Given any w ∈W and any expression s1 · · · sk for w, if `(w) < k implies
w = s1 · · · ŝi · · · ŝj · · · sk for some distinct i, j ∈ [k], then we say (W,S) has the Deletion
Property.

Theorem 1.2.4. Let W be a group with identity element e, and let S be a set of
generators for W such that s2 = e for all s ∈ S. Then the following are equivalent:

(i) (W,S) is a Coxeter system.

(ii) (W,S) has the Strong Exchange Property.

(iii) (W,S) has the Exchange Property.

(iv) (W,S) has the Deletion Property.

Proof: (i) ⇒ (ii) follows from Theorem 1.2.1. (ii) ⇒ (iii) is obvious. The cases (iii)
⇒ (i), (iii) ⇒ (iv), (iv) ⇒ (iii) are proven in (Theorem 1.5.1, [BB05]). �

We remark that for our definition of the Exchange Property and the Strong Exchange
Property in the general setting of arbitrary groups, although we have chosen left
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multiplication of t and s in the respective conditions `(tw) ≤ `(w) and `(sw) ≤
`(w), we could well have chosen right multiplication instead. The choice does not
matter, since the above theorem tells us any pair (W,S) that has the Strong Exchange
Property or the Exchange Property must necessarily be a Coxeter system, so Theorem
1.2.1 and Corollary 1.2.2 above give the corresponding results for both left and right
multiplication.

Having characterized Coxeter systems, we now return to the assumption that (W,S)
denotes a Coxeter system. Next, we shall give a few useful consequences of the above
properties.

Corollary 1.2.5. Let w ∈W , let s1 · · · sk ∈ R(w), and let t ∈ T . Then the following
are equivalent:

(i) `(tw) ≤ `(w).

(ii) `(tw) < `(w).

(iii) tw = s1 · · · ŝi · · · sk, for some i ∈ [k].

(iv) t = s1 · · · si−1sisi−1 · · · s1, for some i ∈ [k].

Furthermore, for each reduced expression s1 · · · sk for w and each t ∈ T , the index
i in (iii) and (iv) is uniquely determined. Similarly, for t′ ∈ T , the following are
equivalent:

(i′) `(wt′) ≤ `(w).

(ii′) `(wt′) < `(w).

(iii′) wt′ = s1 · · · ŝj · · · sk, for some j ∈ [k].

(iv′) t′ = sk · · · sj+1sjsj+1 · · · sk, for some j ∈ [k].

Also, for each reduced expression s1 · · · sk for w and each t′ ∈ T , the index j in (iii′)
and (iv′) is uniquely determined.

Proof: The equivalence (i) ⇔ (ii) follows from the fact that `(t) is odd, which by
Proposition 1.1.4 implies `(tw) and `(w) have different parities, and so cannot be
equal. The equivalences (ii) ⇔ (iii) ⇔ (iv) are proved in (Corollary 1.4.4, [BB05]).
As for the set of equivalences (i′) ⇔ (ii′) ⇔ (iii′) ⇔ (iv′), it is an easy consequence of
the set of equivalences (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) by using the fact that `(w) = `(w−1)
for all w ∈W . �

Corollary 1.2.6. Given any word w ∈W , the following hold:

(i) Any expression wi for w contains a subexpression that is a reduced expression
for w, obtainable by deleting an even number of letters.

(ii) For any w1, w2 ∈ R(w), the set of letters appearing in the expression w1 equals
the set of letters appearing in the expression w2.
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(iii) S is a minimal generating set for W , i.e. no Coxeter generator can be expressed
in terms of the others.

(iv) Any two expressions for w must have expression lengths of the same parity.

Proof: Parts (i)-(iii) are proven in (Corollary 1.4.8, [BB05]). Part (iv) easily follows
from part (i), since part (i) implies any two expressions for w must have expression
lengths of the same parity as `(w). �

Definition. For any w ∈ W , denote §(w) ⊆ S as the set of letters appearing in any
reduced expression for w. In particular, §(e) = ∅. Note that §(w) is well-defined by
Corollary 1.2.6(ii).

Corollary 1.2.7. If s1, . . . , sn are distinct elements in S for some n ∈ Z+, then the
expression s1s2 · · · sn is reduced.

Proof: Suppose s1 · · · sn is not reduced, then by the Deletion Property, there exists
distinct i, j ∈ [n] such that s1 · · · sn = s1 · · · ŝi · · · ŝj · · · sn. Multiply both sides of the
equation on the left by sisi−1 · · · s1 and on the right by snsn−1 · · · si+1, the identity
s2 = e for all s ∈ S gives us si = si+1 · · · sj−1sjsj−1 · · · si+1, which then contradicts
Corollary 1.2.6 part (iii). The assertion then follows. �

1.3 Inversion Tables and Descent Sets

One of the main themes of enumerative combinatorics is the study of permutations
of sets, which is well-understood and has found applications in diverse areas in math-
ematics. Permutations of finite sets can be treated as elements in the symmetric
group Sn, and recall from Proposition 1.1.2 that Sn (n ≥ 2) is the Coxeter group
of type An−1. Hence, a natural question that arises is: What properties associated
to the symmetric group and the permutation of sets can be extended analogously to
the general Coxeter group? It is with this motivation that we study the descent sets
associated to a Coxeter group, which can be regarded as extensions of the descent
sets studied in Sn into the realm of Coxeter systems.

As discussed in (Chapter 1.3, [Sta02]), two of the fundamental statistics associated
with a permutation π ∈ Sn are its inversion table and its descent set.

Definition. Let π be a permutation in Sn. The pair (i, j) ∈ [n] × [n] is called an
inversion of π if i < j and π(i) > π(j). If i ∈ [n−1] such that (i, i+1) is an inversion
of π, then the index i is called a descent of π. The inversion set of π, denoted by
Inv(π), is the set of inversions of π, and the descent set of π, denoted by D(π), is the
set of descents of π. More explicitly, we have

Inv(π) = {(i, j) : i < j, π(i) > π(j)} (1.6)
D(π) = {i : π(i) > π(i + 1)} (1.7)

Define the inversion number inv(π) of π as inv(π) = |Inv(π)|, and define the descent
number d(π) of π as d(π) = |D(π)|. Also, for each k ∈ [n], denote bk = |{i ∈ [n] :
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i < π−1(k), π(i) > k}|. (Note that the inverse map π−1 is well-defined, since π is a
bijection of [n] onto itself.) In other words, if we denote ai = π(i) for each i ∈ [n],
then k = aπ−1(k), and bk counts the number of terms in the sequence (a1, . . . , an)
to the left of aπ−1(k) that are larger than k. The sequence (b1, . . . , bn) is called the
inversion table of π. In particular, note that bn is necessarily 0.

Definition. For any n ∈ Z+ and any π ∈ Sn, π acts as a permutation on [n]. Denote
π(i) as ai for each i ∈ [n]. We have a1, a2, . . . , an is a permutation of 1, 2, . . . , n, and
π is uniquely determined by the images a1, . . . , an under this group action. We then
say a1a2 · · · an is a permutation representation of π.

Example 1.3.1. Consider π ∈ S6 with permutation representation 362154. The
inversion set of π is Inv(π) = {(1, 3), (1, 4), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (5, 6)}, and
the descent set of π is D(π) = {2, 3, 5}. The inversion number and descent number
of π are inv(π) = 8 and d(π) = 3. The inversion table of π is (3, 2, 0, 2, 1, 0).

We remark that there is a natural bijection between permutations and inversion tables
(see Proposition 1.3.9 in [Sta02]). Also, if (b1, . . . , bn) is the inversion table of a
permutation π ∈ Sn, then b1 + . . . + bn counts the number of inversions of π, and we
get

inv(π) = b1 + . . . + bn. (1.8)

We are now ready to relate the properties of permutations discussed above to the
setting of Coxeter systems.

Lemma 1.3.2. Let (Sn, S) (n ≥ 2) be the standard Coxeter system of the symmetric
group Sn. Then for any w ∈ Sn, we have `(w) = inv(w).

Proof: See (Proposition 1.5.2, [BB05]) �

In fact, if we know the inversion table of w, we can say even more. First, we define
the notions of ascending expressions and descending expressions.

Definition. Let (W,S) be a Coxeter system of finite rank n, and label the elements
in S as s1, . . . , sn. Let t1, t2 ∈ [n]. If t1 ≤ t2, denote β́(t1 : t2) as the expression
st1st1+1 · · · st2 and denote β̀(t2 : t1) as the expression st2st2−1 · · · st1 , and if t1 > t2,
set each of β́(t1 : t2), β̀(t2 : t1) as the empty expression. Note that if t1 ≤ t2, then
β́(t1 : t2) and β̀(t2 : t1) each has expression length t2 − t1 + 1, while if t1 > t2, then
β́(t1 : t2) and β̀(t2 : t1) each has expression length 0. We call β́(t1 : t2) an ascending
expression, and we call β̀(t1 : t2) a descending expression.

Next, we record some obvious observations:

Proposition 1.3.3. Let (Sn, S) (with n ≥ 2) be the standard Coxeter system of
the symmetric group Sn. For any w ∈ Sn, let a1 · · · an be the permutation repre-
sentation of w. Then for any j ∈ [n − 1], the permutation representation of wsj is
a1 · · · aj−1aj+1ajaj+2 · · · an, obtained from a1 · · · an by swapping the terms aj and
aj+1.

Proof: This is obvious, since sj is just the transposition (j, j + 1). �

Proposition 1.3.4. Let (Sn, S) (with n ≥ 2) be the standard Coxeter system of the
symmetric group Sn. For any w ∈ Sn, let a1 · · · an be the permutation representation
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of w. Then for any j ∈ [n − 1], the permutation representation of ws1s2 · · · sj is
a2a3 · · · aj+1a1aj+2 · · · an, obtained from a1 · · · an by shifting the term a1 from the
left of a2 to in between terms aj+1 and aj+2.

Proof: This is an application of Proposition 1.3.3 and is obvious. �

Now, given the inversion table of w ∈ Sn, we shall find an explicit reduced expression
for w.

Theorem 1.3.5. Let (Sn, S) (with n ≥ 2) be the standard Coxeter system of the
symmetric group Sn. Let w ∈ Sn, and let (b1, . . . , bn) be the inversion table of w. For
each k ∈ [n − 1], denote vk as the expression β́(k : k − 1 + bk). Then the expression
vn−1 · · · v2v1 is a reduced expression for w.

Proof: We shall prove this by induction on n. The base case n = 2 is trivially true.
Suppose that for some integer N > 2, the assertion is true for all integers n satisfying
2 ≤ n < N . Consider the case n = N , choose a word w ∈ SN , let a1 · · · aN be
its permutation representation, and let (b1, . . . , bN ) be the inversion table of w. By
definition, a1, . . . , aN is just a permutation of 1, . . . , N . Let j ∈ [N ] be the unique
index such that aj = 1. Let v ∈ SN be the permutation given by the permutation
representation 1a1 · · · aj−1aj+1 · · · aN , and in particular, v fixes 1. From Proposition
1.3.4, we get w = vs1 · · · sj−1. Since 1 is the smallest integer in [N ], all j − 1 terms
to the left of aj in a1 · · · aN are larger that aj = 1, so b1 = j − 1 by definition, hence
w = vs1 · · · sj−1 is equivalent to w = vv1.

For each i ∈ [N − 1], denote a′i as ai − 1 if i < j, and denote a′i as ai+1 − 1 if
i ≥ j. In other words, the sequence a′1, . . . , a

′
N−1 is obtained from a1, . . . , aN by

subtracting 1 from each term, and then omitting the term 0. Note that a′1, . . . , a
′
N−1

is a permutation of 1, . . . , N − 1, and denote v′ as the unique permutation in SN−1

with permutation representation a′1 · · · a′N−1. Denote (b′1, . . . , b
′
N−1) as the inversion

table of w′. By the construction of w′, we easily see that b′i = bi+1 for each i ∈ [N−1].

Now, since v fixes 1 and permutes the integers 2, . . . , N , we can treat v as a permu-
tation on N − 1 elements. Let G be the subgroup of SN such that every permutation
in G fixes 1, and let S′ = {s2, . . . , sN}. Observe that G ∼= SN−1 and that S′ is a set
of generators for G, so that (G, S′) and (SN−1, S) are isomorphic as Coxeter systems.
Under this isomorphism, v corresponds to v′, so by applying the induction hypothesis
on v′ and using this isomorphism, we get

v = β́(N − 1 : N − 1 + b′N−2)β́(N − 2 : N − 2 + b′N−3) · · · β́(2 : 1 + b′1)

= β́(N − 1 : N − 1 + bN−1)β́(N − 2 : N − 2 + bN−2) · · · β́(2 : 1 + b2)
= vN−1vN−2 · · · v2.

Consequently, since w = vv1, we get w = vN−1vN−2 · · · v1, which by definition has
expression length b1 + . . .+ bN−1. Finally, from (1.8) and Lemma 1.3.2, since bN = 0,
we have `(w) = inv(w) = b1 + . . . + bN−1, therefore this expression vN−1vN−2 · · · v1

for w is reduced, and by induction, the assertion follows. �

Example 1.3.6. Recall from Example 1.3.1 that the permutation π ∈ S6 represented
by 362154 has inversion table (3, 2, 0, 2, 1, 0). Theorem 1.3.5 then says

β́(5, 4 + 1)β́(4, 3 + 2)β́(3, 2 + 0)β́(2, 1 + 2)β́(1, 0 + 3) = s5s4s5s2s3s1s2s3
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is a reduced expression for π ∈ S6.

Remark. Consider the standard Coxeter system (Sn, S) for Sn. For any w ∈ Sn,
it follows from Theorem 1.3.5 that if we know the inversion table of w, then we can
explicitly construct a reduced expression for w. A natural question that follows is
whether the notion of inversion table can be extended analogously to the general
Coxeter system. If such an extension is possible, then we should be able to explicitly
construct a reduced expression for any given word in any Coxeter system.

The discussion of the relation between inversion tables and Coxeter systems so far has
been fruitful. Next, we shift our attention to the other statistic of permutations of
sets - descent sets. Again, let (Sn, S) be the standard Coxeter system for Sn. For any
word w ∈ Sn, let a1 · · · an be the permutation representation of w. From Proposition
1.3.3, we get the following:

inv(wsi) =

{
inv(w) + 1, if w(i) < w(i + 1)
inv(w)− 1, if w(i) > w(i + 1)

. (1.9)

Applying Lemma 1.3.2, this is equivalent to

`(wsi) =

{
`(w) + 1, if w(i) < w(i + 1)
`(w)− 1, if w(i) > w(i + 1)

. (1.10)

We now consider the following definitions:

Definition. For any w ∈W , denote

DL(w) = {s ∈ S : `(sw) < `(w)}, DR(w) = {s ∈ S : `(ws) < `(w)},
TL(w) = {t ∈ T : `(tw) < `(w)}, TR(w) = {t ∈ T : `(wt) < `(w)}.

DL(w) is called the left descent set of w, while DR(w) is called the right descent set
of w. TL(w) is called the set of left associated reflections to w, while TR(w) is called
the set of right associated reflections to w. The subscripts ‘L’ and ‘R’ are mnemonic
for ‘left’ and ‘right’ respectively.

For any permutation w ∈ Sn, it follows from (1.10) that i ∈ D(w) if and only if
si ∈ DR(w). As discussed in [BB05], this is the reason why DR(w) are known as
descent sets. The following results give the relation between descent sets and reduced
expressions of words.

Lemma 1.3.7. For all w ∈W and s ∈ S, the following hold:

(i) s ∈ DL(w) if and only if some reduced expression for w begins with the letter
s.

(ii) s ∈ DR(w) if and only if some reduced expression for w ends with the letter s.

Proof: See (Corollary 1.4.6, [BB05]). �

Proposition 1.3.8. For all w ∈ W , we have TR(w) = TL(w−1) and DR(w) =
DL(w−1).

Proof: This is an immediate consequence of Proposition 1.1.4 (iv). �



Chapter 2

Poset Structure, Parabolic
Subgroups and Quotients

In this chapter, we shall discuss two partial order relations on Coxeter systems - the
Bruhat order, and the weak order. As an overview, the Bruhat order is defined by
reflections (i.e. elements in T ), while the weak order is defined by simple reflections
(i.e. elements in S ⊆ T ), so weak order necessarily implies Bruhat order, but not
conversely. In this sense, the weak order is ‘weaker’ than the Bruhat order, hence its
name.

We shall first explore some basic properties of the Bruhat order and the weak or-
der. Next, we shall introduce the parabolic subgroups and quotient groups of Coxeter
groups, and discuss properties of unique factorization in the setting of Coxeter sys-
tems. Finally, from a combinatorial perspective, we explore the relations between the
largest elements of the Coxeter group and its corresponding parabolic and quotient
subgroups.

2.1 Bruhat Order

The Bruhat order of a Coxeter system (W,S) is determined by its set of reflections
T , where we recall from Chapter 1.1 that T = {wsw−1 : s ∈ S, w ∈ W}. The notion
of ‘reflections’ suggests a geometric interpretation, and indeed, the Bruhat order was
first considered in the 1930s with the purpose of describing the containment ordering
of Schubert varieties in flag manifolds, Grassmannians, and other homogenous spaces.
Since then, the Bruhat order has found various applications in geometry and repre-
sentation theory. Although such applications are interesting, they are not used in
the discussion of later chapters, so we shall deviate from the conventional geometric
approach and deal only with the relevant combinatorial properties of the Bruhat or-
der. The interested reader is referred to [Hum92] for a detailed discussion of reflection
groups.

17
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Definition. Let u, w ∈W . Then

(i) For a given t ∈ T , denote u
t→ w to mean that ut = w and `(u) < `(w).

(ii) Denote u→ w to mean that u
t→ w for some t ∈ T .

(iii) Denote u ≤ w to mean there exist k ∈ Z≥0 and u0, . . . , uk ∈W such that

u = u0 → u1 → · · · → uk = w.

The Bruhat graph is the directed graph whose nodes are the elements of W , and whose
edges are given by (ii). The Bruhat order is the partial order relation defined on the
set W , given by part (iii).

First, we record some obvious observations that follow immediately from the defini-
tion:

Lemma 2.1.1. The following are obvious:

(i) For any u, w ∈W , u < w implies `(u) < `(w).

(ii) For all u ∈W and all t ∈ T , we have u < ut if and only if `(u) < `(ut).

(iii) The identity element e satisfies e ≤ w for all w ∈W . In particular, if s1 · · · sk ∈
R(w), then we get the induced chain e→ s1 → s1s2 → · · · → s1 · · · sk = w.

Next, we shall list a few relevant results related to Bruhat order. Of great importance
is the Subword Property (Theorem 2.1.3) and the Chain Property (Theorem 2.1.6).
The proofs of all these results can be found in [BB05], and the reader is referred to
the corresponding relevant sections.

Lemma 2.1.2. For distinct u, w ∈ W , let s1 · · · sk ∈ R(w), and suppose that some
reduced expression for u is a sub-expression of s1 · · · sk. Then there exists v ∈ W
such that the following hold:

(i) v > u.

(ii) `(v) = `(u) + 1.

(iii) Some reduced expression for v is a sub-expression of s1 · · · sk.

Proof: See (Lemma 2.2.1, [BB05]). �

Theorem 2.1.3. (Subword Property) Let u, w ∈ W , and let wi = s1 · · · sk ∈
R(w). Then u ≤ w if and only if there exists a sub-expression w′

i of wi such that
w′

i ∈ R(u). In other words,

u ≤ w ⇔ u = si1si2 · · · sit
is reduced for some 1 ≤ i1 < i2 < . . . < it ≤ k.

Proof: See (Theorem 2.2.2, [BB05]). �
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Corollary 2.1.4. For u, w ∈W , the following are equivalent:

(i) u ≤ w.

(ii) Every reduced expression for w has a sub-expression that is a reduced expression
for u.

(iii) Some reduced expression for w has a sub-expression that is a reduced expression
for u.

Proof: See (Corollary 2.2.3, [BB05]). �

Corollary 2.1.5. The mapping w 7→ w−1 is an automorphism of Bruhat order. In
other words, for u, w ∈W , we have u ≤ w if and only if u−1 ≤ w−1.

Proof: See (Corollary 2.2.5, [BB05]). �

Theorem 2.1.6. (Chain Property) If u, w ∈W such that u < w, then there exists
a chain u = u0 < u1 < . . . < uk = w such that `(ui) = `(u) + i for every i ∈ [k].

Proof: This immediately follows from Lemma 2.1.2 and the Subword Property. �

Definition. We shall use the notation “uCv” or “vBu” to mean a covering in Bruhat
order. Thus, by the Chain Property, u C v means that u < v and `(u) + 1 = `(v).
Similarly, v B u means that v > u and `(v) = `(u) + 1.

In particular, the Chain Property shows that Bruhat order is a graded poset whose
rank function is the length function `. This is also true for any Bruhat interval [u, v].

2.2 Weak Order

In this section, we shall explore the weak order of Coxeter groups.

Definition. Let u, w ∈W . Then

(i) u ≤R w means that w = us1 · · · sk for some k ∈ Z≥0 and some s1, . . . , sk ∈ S,
such that `(us1 · · · si) = `(u) + i for every i ∈ [k].

(ii) u ≤L w means that w = sksk−1 · · · s1u for some k ∈ Z≥0 and some s1, . . . , sk ∈
S, such that `(si · · · s1u) = `(u) + i for every i ∈ [k].

The partial order relations ≤R and ≤L are called the right weak order and the left
weak order respectively.

Although the right and left weak order are distinct partial orderings of W , they are
isomorphic via the map w 7→ w−1. For any u, w ∈W , one important relation between
the weak order and the Bruhat order is the following:

u ≤R w or u ≤L w ⇒ u ≤ w (2.1)
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Next, we give a list of properties of the weak order:

Proposition 2.2.1. Let u, w ∈W , then the following hold:

(i) There is a one-to-one correspondence between elements in R(w) and maximal
chains in the interval [e, w]R.

(ii) u ≤R w ⇔ `(u) + `(u−1w) = `(w).

(iii) If W is finite, then w ≤R w0 for all w ∈ W , where w0 denotes the unique
element in W of maximal length.

(iv) (Prefix Property) u ≤R w if and only if there exists k,m ∈ Z≥0, and some
s1, . . . , sk, s′1, . . . , s

′
m ∈ S such that s1 · · · sk ∈ R(u) and s1 · · · sks′1 · · · s′m ∈

R(w).

(v) (Chain Property) If u <R w, then there exists a chain u = u0 <R u1 <R

. . . <R uk = w such that `(ui) = `(u) + i for every i ∈ [k].

(vi) W under the weak order is a graded poset ranked by the length function `, and
so is every interval [u, w]R.

(vii) If s ∈ DL(u) ∩DL(w), then u ≤R w if and only if su ≤R sw.

(viii) u ≤R w if and only if TL(u) ⊆ TL(w).

Proof: Parts (i)-(vii) are proven in (Proposition 3.1.2, [BB05]), while part (viii) is
proven in (Proposition 3.1.3, [BB05]). �

Proposition 2.2.2. Let v, w ∈W . Then the following are equivalent:

(i) v ≤R vw.

(ii) `(vw) = `(v) + `(w).

(iii) viwi is reduced for some vi ∈ R(v), wi ∈ R(w).

(iv) viwi is reduced for all vi ∈ R(v), wi ∈ R(w).

Proof: The equivalence (i)⇔ (ii) is an immediate consequence of Proposition 2.2.1(ii).
The equivalence (ii) ⇔ (iii) ⇔ (iv) is trivially true by the definition of reduced ex-
pressions. �

Proposition 2.2.3. Let v, w ∈W . If v ≤R vw, then DR(v) ∩DL(w) = ∅.

Proof: We shall prove its contrapositive. If DR(v) ∩DL(w) 6= ∅, then choosing some
s0 ∈ DR(v)∩DL(w), Lemma 1.3.7 tells us there is some expression vi ∈ R(v) ending
in s0, and there is some expression wi ∈ R(w) beginning with s0, hence viwi is
obviously not reduced, so Proposition 2.2.2 implies v 6≤R vw. �

Note that the converse of Proposition 2.2.3 is not true. For example, if s, s′ ∈ S are
distinct generators satisfying m(s, s′) = 3, then DR(ss′) = {s′} and DL(ss′) = {s},
and we have DR(ss′) ∩DL(ss′) = ∅. Yet ss′ss′ = s′s, and we obviously have ss′ 6≤R

s′s. However, there is still a partial converse as follows:
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Remark. Let v, w ∈W . If DR(v) ∩ §(w) = ∅, then v ≤R vw.

At this point, we do not have the necessary tools to prove this partial converse.
However, we shall see in the next section that this partial converse easily follows from
unique factorization.

2.3 Unique Factorization

In this section, we shall introduce the notions of parabolic subgroups and quotients.
One very useful result of studying the parabolic subgroups and quotients of Coxeter
systems is that we obtain a unique factorization property of the words in W .

Definition. Let J ⊆ S. We denote WJ to be the subgroup of W generated by the
set J , and we call WJ the parabolic subgroup of W generated by J . Also, we denote

W J = {w ∈W : ws > w for all s ∈ J}. (2.2)
JW = {w ∈W : sw > w for all s ∈ J}. (2.3)

We call W J and JW quotients of W . Also, we denote `J(·) as the length function of
WJ with respect to the set of generators J .

Some basic properties of parabolic subgroups are listed below:

Proposition 2.3.1. Let I, J ⊆ S. The following hold:

(i) (WJ , J) is a Coxeter system.

(ii) `J(w) = `(w) for all w ∈WJ .

(iii) WI ∩WJ = WI∩J .

(iv) 〈WI ∪WJ〉 = WI∪J .

(v) WI = WJ ⇒ I = J .

Proof: See (Proposition 2.4.1, [BB05]). �

Definition. For I ⊆ J ⊆ S, define the following:

DJ
I = {w ∈W : I ⊆ DR(w) ⊆ J}. (2.4)

J
ID = {w ∈W : I ⊆ DL(w) ⊆ J}. (2.5)

Sets of the form DJ
I are called right descent classes, while sets of the form J

ID are
called left descent classes.

By the definition of descent classes, it easily follows that we have the following iden-
tities

W J = {w ∈W : ws > w ∀ s ∈ J} = {w ∈W : DR(w) ⊆ S \ J} = DS\J
∅ . (2.6)

JW = {w ∈W : sw > w ∀ s ∈ J} = {w ∈W : DL(w) ⊆ S \ J} = S\J
∅ D. (2.7)
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This just means that W J is the set of all words in W whose right descent sets are
disjoint from J , while JW is the set of all words in W whose left descent sets are
disjoint from J . In fact, in view of Lemma 1.3.7, we easily get the following lemma:

Lemma 2.3.2. Let J ⊆ S. An element w is in W J if and only if no reduced expression
for w ends with a letter from J . Similarly, an element w′ is in JW if and only if no
reduced expression for w′ begins with a letter from J .

Proof: This directly follows from Lemma 1.3.7. �

We can also refer to quotients of parabolic subgroups naturally. Letting I ⊆ J ⊆ S,
we have the following identities:

(WJ)I = {w ∈WJ : ws > w ∀ s ∈ I} = {w ∈WJ : DR(w) ⊆ J \ I} = DJ\I
∅ . (2.8)

I(WJ) = {w ∈WJ : sw > w ∀ s ∈ I} = {w ∈WJ : DL(w) ⊆ J \ I} = J\I
∅ D. (2.9)

We know come to the main result of this section:

Theorem 2.3.3. Let J ⊆ S. Then every w ∈W has a unique factorization

w = wJ · wJ (2.10)

such that wJ ∈W J and wJ ∈WJ , where for this factorization, we have

`(w) = `(wJ) + `(wJ). (2.11)

Similarly, every v ∈W has a unique factorization

v = vJ · Jv (2.12)

such that vJ ∈WJ and Jv ∈ JW , where for this factorization, we have

`(v) = `(vJ) + `(Jv). (2.13)

Proof: The first assertion for the unique factorization of w is proven in (Proposition
2.4.4, [BB05]). The second assertion for the unique factorization of v easily follows
from the first by observing that JW = (W J)−1 by definition. �

Parabolic subgroups have complete systems of combinatorially distinguished coset
representatives, as shown by the following corollary:

Corollary 2.3.4. Let J ⊆ S. Then the following hold:

(i) Each left coset wWJ has a unique representative of minimal length. The system
of such minimal coset representatives is W J = D

S\J
∅ .

(ii) Each right coset WJw has a unique representative of minimal length. The
system of such minimal coset representatives is JW = S\J

∅ D.

(iii) If WJ is finite, then each left coset wWJ has a unique representative of maximal
length. The system of such maximal coset representatives is DS

J .
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(iv) If WJ is finite, then each right coset WJw has a unique representative of maximal
length. The system of such maximal coset representatives is S

JD.

Proof: See (Corollary 2.4.5, [BB05]) for the proof of (i) and (iii). �

Now, consider the case when (W,S) is a Coxeter system of finite rank (i.e. S is
finite). Label the elements in S as {s1, . . . , sn}, and for each i ∈ [n], denote Qi =
(W{s1,...si})

{s1,...,si−1} if i > 1, and for the case i = 1, denote Q1 = Ws1 = {e, s1}. By
repeatedly applying Theorem 2.3.3, we get the following:

Corollary 2.3.5. The product map Q1 × · · · ×Qn →W , defined by

(q1, q2, . . . , qn) 7→ qnqn−1 · · · q1

is a bijection satisfying `(qnqn−1 · · · q1) = `(q1) + `(q2) + . . . + `(qn).

Proof: This is just the application of Theorem 2.3.3 inductively on Q1, Q2, . . . , Qn. �

Recall from Proposition 2.2.3 that given any v, w ∈ W , we have v ≤R vw implies
DR(v)∩DL(w) = ∅. We also showed that its converse is not true by giving a counter-
example, and we proposed a partial converse. In particular, note that for any word
w ∈W , we have §(w) = A for some subset A ⊆ S implies w ∈WA. We are now ready
to prove that partial converse:

Proposition 2.3.6. Let A ⊆ S, let v ∈W , and let w ∈WA. If DR(v)∩A = ∅, then
v ≤R vw.

Proof: By definition, we have v ∈ WA and w ∈ WA, hence (2.11) gives `(vw) =
`(v) + `(w), so by Proposition 2.2.2(ii), we get v ≤R vw. �

2.4 Largest Elements

For a general Coxeter system (W,S), there may not necessarily be any element having
maximal length. For example, if S is infinite, then Corollary 1.2.7 clearly shows that
there are elements in W of arbitrarily large length. However, if (W,S) is a finite
Coxeter system, then there must exist an element of maximal length. It is not hard
to show that this element is unique. (See Proposition 2.2.9, [BB05] for a proof.) We
can then make the following definition:

Definition. If (W,S) is a finite Coxeter system, then we denote w0 as the unique
element of maximal length. This notation ‘w0’ is standard in the literature of Coxeter
systems. We say w0 is the largest element in W .

Proposition 2.4.1. Let (Sn, S) (with n ≥ 2) be the standard Coxeter system of the
symmetric group Sn. Then largest element w0 in Sn corresponds to the permutation
representation n · · · 21, and w0 has a reduced expression

sn(sn−1sn)(sn−2sn−1sn) · · · (s1 · · · sn). (2.14)
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Proof: Consider an arbitrary word w ∈ Sn with permutation representation a1 · · · an

and inversion table (b1, . . . , bn). For each k ∈ [n], bk counts the number of terms to the
left of aw−1(k) that are larger than k. Since there are n− k integers in [n] larger than
k, we must have bk ≤ n − k. Let w′ ∈ Sn correspond to permutation representation
n(n − 1) · · · 21, and note that w′ has the inversion table (n − 1, n − 2, . . . , 1, 0), so
equality holds in bk ≤ n− k for every k ∈ [n]. By Lemma 1.3.2, w′ has precisely the
largest possible length. So by the uniqueness of w0, and by applying Theorem 1.3.5,
the result follows. �

Next, we give a list of useful results related to w0:

Proposition 2.4.2. Let (W,S) be a finite Coxeter system. Then w0 exists, and for
all w ∈W , the following hold:

(i) w2
0 = e.

(ii) w−1
0 = w0.

(iii) `(ww0) = `(w0w) = `(w0)− `(w).

(iv) `(w0ww0) = `(w).

(v) `(w0) = |T |.

Proof: Parts (i) and (iii)-(v) are proven in (Proposition 2.3.2 and Corollary 2.3.3,
[BB05]). As for part (ii), substitute w = w−1

0 into part (iii) to get `(w−1
0 ) = `(w0),

so by the uniqueness of w0, (ii) follows. �

Proposition 2.4.3. Let (W,S) be any Coxeter system, and let w ∈ W . Then the
following are equivalent:

(i) DL(w) = S.

(ii) DR(w) = S.

(iii) W is finite, and w = w0.

Proof: The equivalence (i) ⇔ (iii) is proven in (Proposition 2.3.1, [BB05]). As for
the equivalence (ii) ⇔ (iii), Proposition 1.3.8 gives us DR(w) = S if and only if
DL(w−1) = S, and the equivalence (i) ⇔ (iii) gives us DL(w−1) = S if and only if W
is finite and w−1 = w0, so by w−1

0 = w0 (Proposition 2.4.2 part (ii)), the equivalence
(ii) ⇔ (iii) follows. �

Proposition 2.4.4. For both the Bruhat order and the weak order on a finite Coxeter
system, the following hold:

(i) w 7→ ww0 and w 7→ w0w are anti-automorphisms.

(ii) w 7→ w0ww0 is an automorphism.
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Proof: See (Proposition 2.3.4, [BB05]) and (Proposition 3.1.5, [BB05]). �

Proposition 2.4.5. Let (W,S) be a finite Coxeter system. Then for any w ∈ W ,
the following hold:

(i) TL(ww0) = T \ TL(w) and TR(w0w) = T \ TR(w).

(ii) TL(w0w) = w0(T \ TL(w))w0 = T \ (w0TL(w)w0) and
TR(ww0) = w0(T \ TR(w))w0 = T \ (w0TR(w)w0).

(iii) TL(w0ww0) = w0TL(w)w0 and TR(w0ww0) = w0TR(w)w0.

(iv) DL(ww0) = S \DL(w) and DR(w0w) = S \DR(w).

(v) DL(w0w) = w0(S \ DL(w))w0 = S \ (w0DL(w)w0) and DR(ww0) = w0(S \
DR(w))w0 = S \ (w0DR(w)w0).

(vi) DL(w0ww0) = w0DL(w)w0 and DR(w0ww0) = w0DR(w)w0.

Proof: In view of Proposition 1.3.8 and the fact that w−1
0 = w0 (Proposition 2.4.2),

replacing w with w−1 in the the first statement of each part gives the corresponding
second part, thus it suffices to prove only the first statement of every part. From the
anti-automorphism w 7→ ww0 (Proposition 2.4.4), we have tww0 < ww0 ⇔ tw > w
for all t ∈ T , and in particular, sww0 < ww0 ⇔ sw > w for all s ∈ S. Similar, the
anti-automorphism w 7→ w0w gives tw0w < w0w ⇔ w0tw0w > w for all t ∈ T and
sw0w < w0w ⇔ w0sw0w > w for all s ∈ S, while the automorphism w 7→ w0ww0

gives tw0ww0 < w0ww0 ⇔ w0tw0w < w for all t ∈ T and sw0ww0 < w0ww0 ⇔
w0sw0w < w for all s ∈ S. Consequently, we have the following:

t ∈ TL(ww0)⇔ tww0 < ww0 ⇔ tw > w ⇔ t ∈ T \ TL(w).
t ∈ TL(w0w)⇔ tw0w < w0w ⇔ w0tw0w > w ⇔ w0tw0 ∈ T \ TL(w).
t ∈ TL(w0ww0)⇔ tw0ww0 < w0ww0 ⇔ w0tw0 < w ⇔ w0tw0 ∈ TL(w).
s ∈ DL(ww0)⇔ sww0 < ww0 ⇔ sw > w ⇔ s ∈ S \DL(w).
s ∈ DL(w0w)⇔ sw0w < w0w ⇔ w0sw0w > w ⇔ w0sw0 ∈ S \DL(w).
s ∈ DL(w0ww0)⇔ sw0ww0 < w0ww0 ⇔ w0sw0 < w ⇔ w0sw0 ∈ DL(w).

Finally, note that

w0tw0 ∈ T \ TL(w)⇔ t ∈ w0(T \ TL(w))w0 ⇔ t ∈ T \ (w0TL(w)w0).
w0tw0 ∈ TL(w)⇔ t ∈ w0TL(w)w0.

w0sw0 ∈ S \DL(w)⇔ s ∈ w0(S \DL(w))w0 ⇔ s ∈ S \ (w0DL(w)w0).
w0sw0 ∈ DL(w)⇔ s ∈ w0DL(w)w0.

Therefore the result follows. �

Next, recall from Proposition 2.3.1(i) that for any J ⊆ S, we have (WJ , J) is a Coxeter
system. Consequently, if WJ is finite, then the above discussion of largest elements
apply.
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Definition. Let (W,S) be a Coxeter system with finite parabolic subgroup WJ for
some J ⊆ S. Then we denote w0(J) as the unique element in WJ of maximal length.
We say w0(J) is the largest element in WJ .

Similarly, we can define the largest elements of W J and JW analogously. This make
sense because W J and JW are directed posets under the Bruhat order (see Corollary
2.5.3, [BB05]).

Definition. Let (W,S) be a Coxeter system. If W J is finite, then we denote wJ
0 as

the unique maximal element in W J . Similarly, if JW is finite, then we denote Jw0 as
the unique maximal element in JW .

By attaching the necessary subscripts or superscripts, we get analogous results for all
the above properties in terms of parabolic subgroups and quotients. In particular,
we note that the length function `(·) must changed to `J(·). Since we will deal with
descent sets in later chapters, we emphasize the following analogous result:

Proposition 2.4.6. Let (W,S) be any Coxeter system, let J ⊆ S, and let w ∈ WJ .
Then the following are equivalent:

(i) DL(w) = J .

(ii) DR(w) = J .

(iii) WJ is finite, and w = w0(J).

Proof: This is just Proposition 2.4.3 applied to Coxeter system (WJ , J). �

One very important relation between the various largest elements is the following:

w0 = wJ
0 · w0(J) = w0(J) · Jw0. (2.15)

By considering lengths, we get the following useful identity:

`(w0) = `(wJ
0 ) + `(w0(J)) = `(w0(J)) + `(Jw0) (2.16)

There is also a Chain Property analogous to Theorem 2.1.6:

Theorem 2.4.7. (Chain Property) If u < w in W J , then there exists a chain
u = u0 C u1 C · · · C uk = w. Similarly, if u′ < w′ in JW , then there exists a chain
u′ = u′0 C u′1 C · · ·C u′k′ = w′.

Proof: See (Theorem 2.5.5, [BB05]). �

Corollary 2.4.8. All maximal chains in W J and JW have the same length.

Proof: This is a direct consequence of the above Chain Property. �

Next, we apply the discussion of largest elements to descent classes. First we make
the following observation:
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Proposition 2.4.9. Let I ⊆ J ⊆ S, then the descent classes DJ
I and J

ID are non-
empty if and only if WI is finite.

Proof: See (Theorem 6.2, [BW88]). �

Theorem 2.4.10. Let I ⊆ J ⊆ S, and let the parabolic subgroup WI be finite. Then
with respect to the Bruhat order, the following hold:

(i) DJ
I and J

ID each has a least element w0(I).

(ii) DJ
I is finite if and only if WS\J is finite. If so, then the largest element in DJ

I

is w
S\J
0 .

(iii) J
ID is finite if and only if S\JW is finite. If so, then the largest element in J

ID
is S\Jw0.

Proof: See (Theorem 6.2, [BW88]). �

Corollary 2.4.11. Let J ⊆ S such that WJ is finite. Then with respect to the
Bruhat order, w0(J) is both the smallest word having left descent set J and the
smallest word having right descent set J . If WS\J is finite, then the largest word
having right descent set J is w

S\J
0 . If J

ID is finite, then the largest word having left
descent set J is S\Jw0.

Proof: Substitute i = j into Theorem 2.4.10 above. �



Chapter 3

Reduced Expressions and
Braid Moves

One of the unifying themes in the study of combinatorial properties of Coxeter systems
is the combinatorics of reduced expressions. Given a Coxeter system (W,S), each
word w ∈ W represents a class R(w) of reduced expressions, so in order to gain a
better understanding of Coxeter systems and the combinatorics of descent sets, it is
imperative that we ‘get our hands dirty’ and study how one reduced expression is
obtained from another.

In this chapter, we shall introduce the Word Property and develop the theory of
braid moves and sequences of braid moves. With the notable exception of the Word
Property (Theorem 3.1.2), most of the other results in this chapter are new. As such,
beyond the Word Property, we have to develop both the theory and the notations
from scratch.

3.1 Word Property

Definition. Let (W,S) be a Coxeter system. If |S| ≥ 2, and if s, s′ ∈ S are distinct
generators, then we denote αs,s′(k) as the expression ss′ss′ · · · with expression length
k. We call αs,s′(k) an alternating expression.

Recall from (1.3) that if s, s′ ∈ S are distinct and m(s, s′) 6= ∞, then αs,s′(m(s, s′))
and αs′,s(m(s′, s)) represent the same word. Thus, for any given word w ∈W and any
expression s1 · · · sk for w, if αs,s′(m(s, s′)) occurs as a sub-expression of s1 · · · sk, then
by replacing this sub-expression with αs′,s(m(s′, s)), the new expression obtained is
still an expression for w. Since m(s, s′) = m(s′, s), the expression length remains in-
variant under this replacement. In particular, if s1 · · · sk is a reduced expression, then
the new expression obtained after the replacement must also be a reduced expression.

28
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Also, we have ss = e for all s ∈ S, so deleting any occurrence of ss from an expression
does not change the word it represents, although the expression length of the new
expression obtained is decreased by 2. In particular, if s1 · · · sk is a reduced expression,
then for every s ∈ S, the expression s1 · · · sk must necessarily have no occurrence of
ss as a sub-expression. These observations motivate us to define the following:

Definition. Let wi denote the expression s1 · · · sk (not necessarily reduced). We
define a nil move on wi as the deletion of a sub-expression of the form ss from wi

(for some s ∈ S) . Also, we define a braid move on wi as the replacement of a sub-
expression of the form αs,s′(m(s, s′)) with the expression αs′,s(m(s′, s)) (for some
distinct s, s′ ∈ S satisfying m(s, s′) 6= ∞). If an expression wi is changed to an
expression w′

i by either a nil move or a braid move, then we write wi ∼ w′
i.

Example 3.1.1. Recall the Coxeter system (W,S) in Example 1.1.1. For the con-
venience of the reader, the corresponding Coxeter matrix and Coxeter diagram is
reproduced here: 

1 ∞ 2 2
∞ 1 3 5
2 3 1 2
2 5 2 1

 ←→
◦ ◦∞
s1

◦s2 s3

s4◦
5

The following is then a valid sequence of two nil moves and two braid moves in (W,S):

s2s3s1s1s2s4s3 ∼ s2s3s2s4s3 ∼ s3s2s3s4s3 ∼ s3s2s4s3s3 ∼ s3s2s4

Note that the sub-expressions involved in the nil moves and braid moves have been
underlined for the convenience of the reader.

In view of the above discussion, nil moves and braid moves do not change the word
that the expressions represent, so if v0 is an expression for the word v ∈ W , and
v0 ∼ v1 ∼ · · · ∼ vk is a sequence of nil moves and braid moves, then v0, v1, . . . , vk are
all expressions representing the same word v. In particular, if v0 ∈ R(v), then all the
moves are necessarily braid moves, and we get v0, v1, . . . , vk ∈ R(v).

We now come to the most important theorem in this chapter, for which many of the
other results in the chapter are based upon:

Theorem 3.1.2. (Word Property) Let (W,S) be a Coxeter system, and let w ∈W .
Then the following hold:

(i) Any expression s1 · · · sk for w can be transformed into a reduced expression for
w by a sequence of nil moves and braid moves.

(ii) Every two reduced expressions for w can be connected via a sequence of braid
moves.

Proof: See (Theorem 3.3.1, [BB05]). �

Next, we shall introduce some useful notations:
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Definition. Let (W,S) be a Coxeter system. Given any v ∈ W , let vi = si1 · · · sik

be an expression (not necessarily reduced) for v. We say sij is the j-th coordinate of
the expression vi = si1 · · · sik

for v, and we say the index of the specific letter sij in vi

is j. Note that coordinates are letters among {si1 , . . . , sik
}, while indices are integers

in [k]. For any t1, t2 ∈ [k], if t1 ≤ t2, then define τ(vi, t1 : t2) to be the subexpression
sit1
· · · sit2

, and if t1 > t2, then set τ(vi, t1 : t2) as the empty expression. If t1 = t2 = t,
we simplify our notation and write τ(vi, t) instead of τ(vi, t : t) to denote the letter sit .
Also, define τ(vi, t1 : t2) to be the subexpression si1 · · · sit1−1sit2+1 · · · sik

obtained by
deleting all the coordinates with indices in the range [t1, t2], i.e. we get τ(vi, t1 : t2)
after deleting the subexpression τ(vi, t1 : t2) from vi. Again, if t1 = t2 = t, we simplify
our notation and write τ(vi, t) instead of τ(vi, t : t). If t1 > t2, we set τ(vi, t1 : t2) as
the whole expression vi.

Example 3.1.3. Denote vi as the expression s1s3s2s5s2s4s1. Then τ(vi, 2 : 6) =
s3s2s5s2s4, τ(vi, 7) = s1, and τ(vi, 3 : 1) is the empty expression, while we have
τ(vi, 3 : 4) = s1s3s2s4s1, τ(vi, 2) = s1s2s5s2s4s1, and τ(vi, 6 : 3) = s1s3s2s5s2s4s1.
The 2nd coordinate of vi is s3, the second occurrence of s2 (from left to right) in vi

has index 5, and the index of (the only) s5 in vi is 4.

One simple but useful observation is the following:

Proposition 3.1.4. Any sub-expression of a reduced expression is reduced.

Proof: For any v ∈W , let vi ∈ R(v), and denote `(v) = k. Consider an arbitrary sub-
expression wi = τ(vi, t1 : t2), wheret1, t2 ∈ [k] satisfies t1 ≤ t2. Denote ui = τ(vi, 1 :
t1− 1), u′i = τ(vi, t2 + 1, k), and let u, w, u′ be the words representing the expressions
ui, wi, u

′
i respectively. Note that `(u) ≤ t1 − 1, `(w) ≤ t2 − t1 + 1, `(u′) ≤ k − t2. By

definition, vi = uiwiu
′
i ∈ R(v), hence k = `(vi) ≤ `(u) + `(w) + `(u′) by Proposition

1.1.4. Suppose wi 6∈ R(w), then `(w) < t2 − t1 + 1 implies `(u) + `(w) + `(u′) <
(t1− 1)+ (t2− t1 +1)+(k− t2) = k, which is a contradiction. Consequently, wi must
be a reduced expression. �

3.2 Sequences of Braid Moves

In this section, we focus our attention on braid moves and sequences of braid moves.
For any given word v ∈ W , and let v1 = si1 · · · sim be an expression (not necessarily
reduced) for v. Assume t = m(s, s′) is finite for some distinct s, s′ ∈ S (we necessarily
have t ≥ 2) and suppose the subexpresion τ(v1, k : k + t − 1) is the alternating
expression αs,s′(t) for some k ∈ [m − t + 1]. Denote si′k

· · · si′k+t−1
as the alternating

expression αs′,s(t). We then get

v2 = si1 · · · sik−1si′k
· · · si′k+t−1

sik+t
· · · sim

is another expression for v, which can be obtained by a braid move v1 ∼ v2.

Definition. We shall denote the above braid move just discussed by

si1 · · · sim

[k,k+t−1]
// si1 · · · sik−1si′k

· · · si′k+t−1
sik+t

· · · sim , (3.1)
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or more briefly, v1
[k,k+t−1]

// v2 , where k and k+t−1 are the first and last indices
respectively of the subexpression to be replaced for the braid move.

Remark. The notation [k, k+t−1] is suggestive of the closed interval [k, k+t−1] ⊆ R,
and for any positive integers k1 < k2, we shall write without ambiguity t ∈ [k1, k2] to
refer to t being contained in the closed interval [k1, k2], as well as t being one of the
indices involved in the braid move represented by [k1, k2] (t 6∈ [k1, k2] is analogously
defined). Each braid move can then be identified by some closed interval [k1, k2].

Example 3.2.1. If a, b, c ∈ S are distinct, such that m(a, b) = 3,m(b, c) = 5,m(a, c) =
2, then the following is a valid sequence of braid moves:

cbabacbcba
[3,5]

// cbbabcbcba
[5,9]

// cbbacbcbca
[9,10]

// cbbacbcbac.

One useful observation is the following:

Proposition 3.2.2. Any alternating expression αs,s′(t) that is a sub-expression of a
reduced expression must satisfy t ≤ m(s, s′).

Proof: For an arbitrary reduced expression vi = si1 · · · sik
, assume τ(vi, t1 : t2) =

αs,s′(t) for some t1, t2 ∈ [k] satisfying t2 − t1 + 1 = t. Denote T = m(s, s′) and
suppose on the contrary that t > T . Denote s′it1

· · · s′it1+T−1
as the expression αs′,s(T ).

We can then apply the braid move vi
[t1:t1+T−1]

// v′i , where v′i is the expression
si1 · · · sit1−1s

′
it1
· · · s′it1+T−1

sit1+T
· · · sik

. We then get s′it1+T−1
= sit1+T

, so v′i is not
reduced, which contradicts the fact that braid moves applied to reduced expressions
yield reduced expressions. �

Definition. For any v ∈W , denote Φ(v) as the collection of all (finite) sequences of
braid moves of reduced expressions for v. Note that any φ ∈ Φ(v) can be represented
by

φ : v0
[a1,b1]

// v1
[a2,b2]

// . . .
[aN ,bN ]

// vN

for some v0, v1, . . . , vN ∈ R(v), where for each t ∈ [N ], at and bt are integers satisfying
1 ≤ at < bt ≤ `(v). We can then identify each φ ∈ Φ(v) by (v0, vN ,~a,~b), where
~a = (a1, . . . , aN ),~b = (b1, . . . , bN ) are N -tuples in ZN .

Corollary 3.2.3. Let v ∈ W , and let φ ∈ Φ(v). Then any two consecutive braid
moves in φ are either disjoint, equal, or intersect in exactly one coordinate. More

explicitly, if v0, v1, v2 ∈ R(v) such that v0
[a1,b1]

// v1
[a2,b2]

// v2 is a valid sequence of
braid moves, then exactly one of the following is true:

(i) [a1, b1] ∩ [a2, b2] = ∅.

(ii) [a1, b1] = [a2, b2].

(iii) b1 = a2.

(iv) a1 = b2.



CHAPTER 3. REDUCED EXPRESSIONS AND BRAID MOVES 32

Proof: Since a braid move involves the replacement of an alternating expression, it
follows from the definition of an alternating sequence that a1 < b1 and a2 < b2,
hence the above four possibilities are mutually disjoint. If [a1, b1] ∩ [a2, b2] = ∅,
then we are done. If |[a1, b1] ∩ [a2, b2]| = 1, then either (iii) or (iv) is true, and
we are done. If |[a1, b1] ∩ [a2, b2]| ≥ 2, then there must be two consecutive integers
m,m + 1 contained in [a1, b1] ∩ [a2, b2]. By denoting τ(v0,m) = s, τ(v0,m + 1) = s′,
we must then have s, s′ ∈ S are distinct generators satisfying m(s, s′) 6= ∞, and
each of τ(v0, a1 : b1) and τ(v0, a2 : b2) must be one of the alternating expressions
αs,s′(m(s, s′)) or αs′,s(m(s, s′)). Consequently, it easily follows from Proposition 3.2.2
that we must then have [a1, b1] = [a2, b2]. �

Definition. Given v ∈ W , let vi, v
′
i ∈ R(v). For any φ = (vi, v

′
i,~a,~b) ∈ Φ(v), we

define the sequence length of φ as the length of ~a, or equivalently, the length of ~b, and
we denote this sequence length as ˜̀(φ). More explicitly, if we denote vi, v

′
i as vi0 and

viN
respectively, and if φ is given by

φ : vi0

[a1,b1]
// vi1

[a2,b2]
// . . .

[aN ,bN ]
// viN

,

then the sequence length of φ is N . We define `(vi, v
′
i) as the minimal sequence length

of all the possible sequences of braid moves from vi to v′i. This is well-defined by the
Word Property (Theorem 3.1.2). If ˜̀(φ) = `(vi, v

′
i), then we say φ is reduced, or φ is a

reduced sequence of braid moves. We shall also denote `(φ) to mean ˜̀(vi, v
′
i), so that

`(φ) = ˜̀(φ) if and only if φ is reduced. Also, we say `(φ) is the length of the sequence
φ.

Remark. Observe that for any φ = (vi, v
′
i,~a,~b) ∈ Φ(v), if we are given vi,~a and ~b,

then we can uniquely determine v′i, and if we are given v′i,~a,~b, then we can uniquely
determine vi. Also, the sequence length `(φ) can be determined by the length of the
tuples ~a,~b. This notation for a sequence of braid moves would be useful if we need to
refer to some sequence of braid moves from v0 to vN without needing to specify the
intermediate reduced expressions in the sequence.

Definition. Let φ1 = (ui, u
′
i,~a,~b), φ2 = (vi, v

′
i,~a

′,~b′) be elements of Φ(v). If ui =
u′i and vi = v′i and `(φ1) = `(φ2), then we write φ1 ≡ φ2, and we say that the
two sequences of braid moves are equivalent. It is easy to check that ≡ defines an
equivalence relation.

3.3 Boundary Pairs

In this section, we shall introduce the notion of boundary pairs. We shall see that
for any word w ∈ W , even if R(w) is very large, there are certain restrictions on the
reduced expressions given by boundary pairs, and we shall study the consequences.

Lemma 3.3.1. Given a word v ∈ W , let `(v) = m, and let v0, v1, . . . , vN ∈ R(v)
such that we have the following sequence of braid moves:

v0
[a1,b1]

// v1
[a2,b2]

// . . .
[aN ,bN ]

// vN .
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If k ∈ [m] such that k 6∈ [at, bt] for all t ∈ [N ], then for all i, j ∈ {0, 1, . . . , N}, we
have the following:

(i) τ(vi, k) = τ(vj , k).

(ii) τ(vi, 1 : k − 1) and τ(vj , 1 : k − 1) represent the same word (in the case k > 1).

(iii) τ(vi, k+1 : m) and τ(vj , k+1 : m) represent the same word (in the case k < m).

Equivalently, the k-th coordinate of the expression, the word representing the subex-
pression formed by the first (k − 1) coordinates (if any), and the word representing
the subexpression formed by the last (m − k) coordinates (if any), remain invariant
in this sequence of braid moves.

Proof: Since k 6∈ [at, bt] for all t ∈ [N ], we either have at < bt ≤ k − 1 or k + 1 ≤
at < bt for each t ∈ [N ]. The k-th coordinate of each expression v0, v1, . . . , vN is
not involved in any braid move and hence must remain invariant. By deleting the
last (k −m + 1) coordinates of each expression and omitting any braid moves [at, bt]
such that k + 1 ≤ at < bt, we get a sequence of braid moves for the subexpressions
formed by the first (k − 1) coordinates of each v0, v1, . . . , vN . Similarly, by deleting
the first k coordinates of each expression and omitting any braid moves [at, bt] such
that at < bt ≤ k − 1, we get another sequence of braid moves for the subexpressions
formed by the last (m − k) coordinates of each v0, v1, . . . , vN . Since braid moves do
not change the word, the result follows. �

Definition. Let v ∈ W , let vi, v
′
i ∈ R(v), and let φ = (vi, v

′
i,~a,~b) ∈ Φ(v), where

~a = (a1, . . . , aN ),~b = (b1, . . . , bN ) are N -tuples in ZN . If k ∈ [`(v)− 1] such that for
all t ∈ [N ], we have {k, k+1} 6⊆ [at, bt], then we say {k, k+1} is a boundary pair of φ,
k is a right boundary coordinate of φ, and k+1 is a left boundary coordinate of φ. The
reasons for these notations used will be apparent later. We define K(φ),KR(φ) and
KL(φ) to be the sets of boundary pairs of φ, right boundary coordinates of φ, and
left boundary coordinates of φ respectively. More explicitly, we have the following:

K(φ) = {{k, k + 1} | k ∈ [`(v)− 1], {k, k + 1} 6⊆ [at, bt] ∀t ∈ [N ]}, (3.2)
KR(φ) = {k ∈ [`(v)− 1] | {k, k + 1} 6⊆ [at, bt] ∀t ∈ [N ]}, (3.3)
KL(φ) = {k + 1 ∈ [`(v)− 1] | {k, k + 1} 6⊆ [at, bt] ∀t ∈ [N ]}. (3.4)

Theorem 3.3.2. Given a word v ∈W , let `(v) = m ≥ 2 and let v0, v1, . . . , vN ∈ R(v)
such that we have the following sequence of braid moves:

φ : v0
[a1,b1]

// v1
[a2,b2]

// . . .
[aN ,bN ]

// vN .

If {k, k + 1} is a boundary pair of φ, then for all i, j ∈ {0, 1, . . . , N}, we have the
following:

(i) τ(vi, 1 : k) and τ(vj , 1 : k) represent the same word.

(ii) τ(vi, k + 1 : m) and τ(vj , k + 1 : m) represent the same word.
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Proof: Since k, k+1 cannot be both contained in any of [a1, b1], . . . , [aN , bN ], we either
have at < bt ≤ k or k + 1 ≤ at < bt for each t ∈ [N ]. This means k ∈ [at, bt] if and
only if bt = k and k + 1 ∈ [at, bt] if and only if at = k + 1. Let t1 < . . . < tr be all
the distinct integers in [m] (if any) such that ati

= k + 1 for each i ∈ [r]. For each

i ∈ [r] and each braid move vti−1
[ati

,bti
]

// vti , since k 6∈ [ati
, bti

], Lemma 3.3.1
gives us τ(vti−1, 1 : k) = τ(vti

, 1 : k) and τ(vti−1, k + 1 : m) = τ(vti
, k + 1 : m). Next,

consider the following r + 1 (possibly empty) sequences of braid moves:

v0
[a1,b1]

// . . .
[at1−1,bt1−1]

// vt1−1 ,

vti

[ati+1,bti+1]
// . . .

[ati+1−1,bti+1−1]
// vti+1−1 , for i ∈ [r − 1]

vr
[ar+1,br+1]

// . . .
[aN ,bN ]

// vN .

For each such sequence, k + 1 is not involved in any of the braid moves, hence by
Lemma 3.3.1, the word representing the subexpression formed by the first k coor-
dinates and the word representing the subexpression formed by the last (m − k)
coordinates both remain invariant in each of these sequences of braid moves. The
result follows. �

Remark. The above theorem tells us that given any v ∈W and any φ = (vi, v
′
i,~a,~v) ∈

Φ(v), if k is a right boundary coordinate of φ, then the word representing the subex-
pression formed by the first k coordinates remains invariant in the sequence φ of braid
moves, so if we delete all coordinates to the right of the k-th coordinate and omit
all braid moves [at, bt] such that at > k, then we get another valid sequence of braid
moves from the word formed by the first k coordinates of vi to the word formed by
the first k coordinates of v′i. Similarly, if k + 1 is a left boundary coordinate of φ,
then the word representing the subexpression formed by the last (m− k) coordinates
remains invariant in φ, so if we delete all coordinates to the left of the (k + 1)-th
coordinate and omit all braid moves [at, bt] such that bt < k + 1, then we get another
valid sequence of braid moves from the word formed by the last `(v)− k coordinates
of vi to the word formed by the last `(v) − k coordinates of v′i. We shall first make
another definition, then record this observation as Corollary 3.3.3.

Definition. Let v ∈ W and let φ = (vi, v
′
i,~a,~b) ∈ Φ(v), where ~a = (a1, . . . , aN ),~b =

(b1, . . . , bN ). Suppose {k, k + 1} is a boundary pair of φ. Let {i1, . . . , ir} be the set
of all integers in [N ] satisfying i1 < . . . < ir and satisfying bit ≤ k for each t ∈ [r].
Write [N ] \ {i1, . . . , ir} as {j1, . . . , jN−r} so that j1 < . . . < jN−r. By the definition
of a boundary pair, we know that {j1, . . . , jN−r} is the set of all integers in [N ] such
that ajt

≥ k + 1 for each t ∈ [N − r]. We shall then define the following tuples:

~a≤k = (ai1 , . . . , air
), ~b≤k = (bi1 , . . . , bir

),
~a≥k+1 = (aj1 , . . . , ajN−r

), ~b≥k+1 = (bj1 , . . . , bjN−r
).

In other words, ~a≤k and ~b≤k are obtained from ~a and ~b respectively by deleting all
at, bt that are not ≤ k, while ~a≥k+1 and ~b≥k+1 are obtained from ~a and ~b respectively
by deleting all at, bt that are not ≥ k + 1.

Corollary 3.3.3. For any v ∈W , let φ = (vi, v
′
i,~a,~b) ∈ Φ(v), and suppose {k, k +1}

is a boundary pair of φ. Denote ~a = (a, . . . , aN ) and ~b = (b1, . . . , bN ). Denote
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ui = τ(vi, 1 : k), wi = τ(vi, k + 1 : `(v)), u′i = τ(v′i, 1 : k), w′
i = τ(v′i, k + 1 : `(v)) so

that vi = uiwi and v′i = u′iw
′
i. Let u be the word represented by the expression ui

and let w be the word represented by the expression wi. Then we have the following:

(i) (ui, u
′
i,~a≤k,~b≤k) ∈ Φ(u).

(ii) (wi, w
′
i,~a≥k+1,~b≥k+1) ∈ Φ(w).

Proof: Most of this has already been proven in the discussion earlier. We only need
to check that ui, u

′
i are reduced expressions for u and wi, w

′
i are reduced expressions

for w. This is true, since any sub-expression of a reduced expression is reduced by
Proposition 3.1.4. �

Next, we shall investigate what happens when we swap a pair of braid moves in a
sequence of braid moves.

Lemma 3.3.4. Let v ∈W , let v1, v2, v3 ∈ R(v), and let φ : v1
[a1,b1]

// v2
[a2,b2]

// v3 be

a sequence of braid moves. If b1 < a2 or b2 < a1, then φ′ : v1

[a2,b2]
// v′2

[a1,b1]
// v3 is

also a valid sequence of braid moves for some other v′2 ∈ R(v). In particular, we have
φ ≡ φ′.

Proof:
If b1 < a2, then {b1, b1 + 1} is a boundary pair. Denote ui = τ(vi, 1 : b1), wi =
τ(vi, b1 + 1 : `(v)), u′i = τ(v′i, 1 : b1), w′

i = τ(v′i, b1 + 1 : `(v)) so that vi = uiwi and
v′i = u′iw

′
i. Let u be the word represented by the expression ui and let w be the word

represented by the expression wi. By Corollary 3.3.3, we get two sequences of braid

moves ui
[a1,b1]

// u′i and wi
[a2,b2]

// w′
i , hence by adjoining the expressions, we get the

sequence of braid moves uiwi
[a2,b2]

// uiw
′
i

[a1,b1]
// u′iw

′
i . Note that uiwi, uiw

′
i, u

′
iw

′
i ∈

R(uw) = R(v), hence we are done with this case. The other case b2 < a1 can also be
proven using a similar argument. �

Consequently, for any φ = (vi, v
′
i,~a,~b) ∈ Φ(v), where ~a = (a1, . . . , aN ),~b = (b1, . . . , bN )

are N -tuples in ZN , if {k, k + 1} is a boundary pair of φ, then by repeated uses of
Corollary 3.3.3, we can rearrange the braid moves so that we get a new sequence of
braid moves φ′ = (vi, v

′
i,~a

′,~b′), such that the following conditions hold:

(i) φ′ ≡ φ.

(ii) ~a′ = (a′1, . . . , a
′
N ) is a rearrangement of ~a = (a1, . . . , aN ).

(iii) ~b′ = (b′1, . . . , b
′
N ) is a rearrangement of ~b = (b1, . . . , bN ).

(iv) There is some N0 ∈ {0, 1, . . . , N} such that b′1, . . . , b
′
N0
≤ k and a′N0+1, . . . , a

′
N ≥

k + 1.
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In other words, we can always rearrange the braid moves in φ to get φ′, such that the
first N0 braid moves in φ′ only involve the first k coordinates, and the last N − N0

braid moves in φ′ only involve the last `(v)− k coordinates.

By considering all possible boundary pairs of φ, we can then rearrange the braid
moves in φ to get a new sequence φ′′ = (vi, v

′
i,~a

′′,~b′′) ∈ Φ(v), such that for every left
boundary coordinate k of φ, there exists some Nk ∈ {0, 1, . . . , N} such that the first
Nk braid moves in φ′′ only involve the first k coordinates, and the last N −Nk braid
moves in φ′′ only involve the last `(v)− k coordinates. More explicitly, we must have
~a′′ = (a′′1 , . . . , a′′N ),~b′′ = (b′′1 , . . . , b′′N ) satisfy any of the following equivalent conditions:

(i) If k is a right boundary coordinate of φ and b′′t ≤ k < a′′t′ for some t, t′ ∈ [N ],
then t < t′.

(ii) If k is a right boundary coordinate of φ and a′′t < k < a′′t′ for some t, t′ ∈ [N ],
then t < t′.

(iii) If k is a left boundary coordinate of φ and b′′t < k ≤ a′′t′ for some t, t′ ∈ [N ],
then t < t′.

(iv) If k is a left boundary coordinate of φ and b′′t < k < b′′t′ for some t, t′ ∈ [N ],
then t < t′.

The equivalence of the above four conditions follows from the definition of left and
right boundary coordinates.

Definition. Following the notations above, we say that φ is normalized to φ′′, and
we say the sequence φ′′ is the normalized sequence of φ. Any arbitrary sequence is
called normal if it equals its normalized sequence.

Next, we note that for any v ∈ W and any φ = (vi, v
′
i,~a,~b) ∈ Φ(v), if we order the

elements in KR(φ) = {k1, . . . , kr} so that k1 < . . . < kr, then every braid move [at, bt]
of φ must satisfy ki < at < bt ≤ ki+1 for some i ∈ [r − 1], i.e. [at, bt] ⊆ (ki, ki+1].
This gives us a natural way to group the braid moves, which motivates the following
definition:

Definition. Let v ∈ W , let φ = (vi, v
′
i,~a,~b) ∈ Φ(v), where ~a = (a1, . . . , aN ),~b =

(b1, . . . , bN ), and let KR(φ) = {k1, . . . , kr} such that k1 < . . . < kr. For each i ∈ [r−1],
if the set of closed intervals

Ai = {[at, bt] : t ∈ [N ], [at, bt] ⊆ (ki, ki+1]}

is non-empty, then we say that Ai is a braid move component of φ. If φ has only one
braid move component, then we say φ is connected.



Chapter 4

Comparisions of Descent Sets

In this chapter, we shall apply the theory developed in the previous three chapters to
obtain results regarding descent sets. In Section 4.1, we introduce the idea of tagging
a word and investigate what attaching two words together does to the corresponding
descent set. In Section 4.2, we shall define the notion of dominating sets and derive
results regarding dominating sets. All the results in this chapter are new, and we
shall discuss the applications of these new results in Chapter 5.

4.1 Attaching and Tagging Elements

Suppose we know the elements in the descent sets DR(v) and DR(w) for some v, w ∈
W . What can we say about the elements in DR(vw)? In this section, we shall
introduce the idea of tagging a word, and then apply it to solve this question.

To motivate the idea of tagging a word, we first give an informal discussion, before
we formalize the idea rigorously:

Recall that a braid move is by definition the replacement of an alternating expression
αs,s′(m(s, s′)) with the alternating expression αs′,s(m(s′, s)), with the assumption
that s, s′ ∈ S are distinct generators satisfying m(s, s′) 6= ∞. Given a word w ∈ W ,
suppose wi ∈ R(w) contains a sub-expression αs,s′ , where s, s′ ∈ S are distinct
generators satisfying m(s, s′) 6= ∞. Consider this alternating sub-expression αs,s′ .
Circle the left-most coordinate of αs,s′ and box up the sub-expression formed by the
remaining coordinates in αs,s′ . We can then interpret a braid move as the swapping
of the circle and the box, keeping the sub-expression in the box invariant, and letting
the letter in the circle be t, where

t =

{
s, if m(s, s′) ≡ 0 (mod 2)
s′, if m(s, s′) ≡ 1 (mod 2)

. (4.1)

37
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Diagramatically, we have the following:

©s s′ss′s · · ·︸ ︷︷ ︸
expression length

m(s,s′)−1

braid move // s′ss′s · · ·︸ ︷︷ ︸
expression length

m(s′,s)−1

©t

By symmetry, we could instead have circled the right-most coordinate of αs,s′ and
boxed up the sub-expression formed by the remaining coordinates in αs,s′ . The coor-
dinate in the circle would then be t (as defined in (4.1) above), so a braid move could
also be represented diagramatically by the following:

s′ss′s · · ·︸ ︷︷ ︸
expression length

m(s,s′)−1

©t braid move // ©s s′ss′s · · ·︸ ︷︷ ︸
expression length

m(s′,s)−1

Suppose we “tag” the circle and keep track of where the circle moves to after braid
moves are applied. Any braid move not involving this circle would not change the
position of the circle relative to the expression for the given word w, while any braid
move involving this circle would swap the circle with a sub-expression of expression
length m(s, s′)− 1 for some distinct s, s′ ∈ S satisfying m(s, s′) 6=∞.

Next, consider a sequence of braid moves of sequence length N :

wi = wi0
[a1,b1]

// wi1
[a2,b2]

// · · ·
[aN ,bN ]

// wiN

Starting with wi = wi0 , we keep track of the relative position of the tagged circle
relative to the various reduced expressions of wim

for w. Denote vi as the expression
formed by deleting the circled coordinate from wi, and denote v as the word that vi

represents. We then observe that if we delete the coordinate in the tagged circle for
each of the reduced expressions wi0 , wi1 , . . . , wiN

in the above sequence, each of the
resultant expressions is actually a reduced expression for v. This means that if we
delete the circled coordinates from the reduced expressions wi0 , wi1 , . . . , wiN

, omit all
braid moves involving the circled coordinates, and make necessary adjustments to the
numbering of the indices, we would get a sequence of braid moves for the word v.

Keeping in mind the above informal discussion, we shall now rigorize the idea:

Suppose we are given v, w ∈ W such that v C w. By definition, we can write v = wt
for some t ∈ TR(w), so that `(wt) + 1 = `(w). By Corollary 1.2.5, any reduced
expression wi for w has a unique coordinate whose deletion yields an expression vi

for v. By length considerations, we necessarily have vi ∈ R(v). More explicitly,
if s1 · · · sk ∈ R(w), then there exists a unique j ∈ [k] such that τ(wi, j) ∈ R(v).
Consequently, the following definition is well-defined:

Definition. Let v, w ∈W such that v Cw. For each wi ∈ R(w), let j ∈ [`(w)] be the
unique integer such that τ(wi, j) ∈ R(v). We then say the letter τ(wi, j) is the tagged
letter of wi with respect to covering v C w. Also, we say the index j is the tag of wi

with respect to covering v C w, and we denote this as ¶vCw(wi) = j. If the context of
the Bruhat covering v C w is clear, we simply say τ(wi, j) is the tagged letter, and we
say j is the tag.
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Proposition 4.1.1. Let v, w ∈ W such that v C w. Let wi ∈ R(w), and let

¶vCw(wi) = j. Then for any valid braid move wi
[a1,b1]

// w′
i satisfying j ∈ [a1, b1], we

either have j = a1 or j = b1.

Proof: Suppose not, then b1 − a1 ≥ 2 and a1 + 1 ≤ j ≤ b1 − 1. Denote τ(wi, j) = s,
denote τ(wi, j − 1) = s′, and note that s, s′ must be distinct, since wi is reduced by
assumption. By the definition of a braid move, the sub-expression τ(wi, a1 : b1) is an
alternating expression, so since this sub-expression contains the letters s and s′, we
must have m(s, s′) = m(s′, s) = b1 − a1 + 1, and we must either have τ(wi, a1 : b1) =
αs,s′(b1−a1+1) or τ(wi, a1 : b1) = αs′,s(b1−a1+1). Either case, since j+1 ∈ [a1, b1],
we get τ(wi, j + 1) = s′.

Denote the expression τ(wi, j) as vi. By the definition of a tag, vi is a reduced
expression for v. However, we observe that τ(vi, j − 1 : j) = s′s′, which implies vi

cannot be reduced, hence a contradiction. The result then follows. �

Proposition 4.1.2. Let v, w ∈W such that vCw. Let wi ∈ R(w), let ¶vCw(wi) = j,

and let τ(wi, j) = s. Let wi
[a1,b1]

// w′
i be a valid braid move. If j = a1, then by

denoting s′ = τ(wi, j +1), we have m(s, s′) = b1−a1 +1, and we have ¶vCw(w′
i) = b1,

with corresponding tagged letter

t =

{
s, if b1 − a1 + 1 ≡ 0 (mod 2)
s′, if b1 − a1 + 1 ≡ 1 (mod 2)

.

Similarly, if j = b1, then by denoting s′′ = τ(wi, j−1), we have m(s, s′′) = b1−a1 +1,
and we have ¶vCw(w′

i) = a1, with corresponding tagged letter

t =

{
s, if b1 − a1 + 1 ≡ 0 (mod 2)
s′′, if b1 − a1 + 1 ≡ 1 (mod 2)

.

Proof: Suppose j = a1. By the definition of a braid move, we know τ(wi, a1 : b1) is
an alternating expression. Since τ(wi, a1) = τ(wi, j) = s, and since τ(wi, j + 1) =
τ(wi, a1 + 1) = s′, we necessarily have that τ(wi, a1 : b1) = αs,s′(m(s, s′)), so by
comparing expression lengths, we get m(s, s′) = b1 − a1 + 1. Denote vi = τ(wi, a1).
By the definition of a tag, we have vi ∈ R(v). We check that τ(w′

i, b1) is the same
expression as vi, thus we get τ(w′

i, b1) ∈ R(v). Consequently, by the uniqueness of
a tag, we get ¶vCw(w′

i) = b1. Finally, by the definition of a braid move, we have
τ(w′

i, a1 : b1) = αs′,s, thus we get

τ(w′
i, b1) =

{
s, if b1 − a1 + 1 ≡ 0 (mod 2)
s′, if b1 − a1 + 1 ≡ 1 (mod 2)

.

This proves the assertion for the case j = a1. The case j = b1 can be proven by a
very similar argument. �

Proposition 4.1.3. Let v, w ∈ W such that v C w. Let wi ∈ R(w), and let

¶vCw(wi) = j. Then for any valid braid move wi
[a1,b1]

// w′
i such that j 6∈ [a1, b1], we

have ¶vCw(w′
i) = j, and τ(w′

i, j) = τ(wi, j) ∈ R(v).
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Proof: Denote `(w) = k. By Lemma 3.3.1, we get τ(wi, 1 : j − 1) and τ(w′
i, 1 : j − 1)

represent the same word, which we shall denote as ui. Also, we get τ(wi, j+1 : k) and
τ(w′

i, j + 1 : k) represent the same word, which we shall denote as vi. It then follows
that τ(wi, j) = uivi = τ(w′

i, j). By the definition of a tag, we have τ(wi, j) ∈ R(v),
which implies τ(w′

i, j) ∈ R(v). Consequently, it follows from the uniqueness of the
tag that ¶vCw(w′

i) = j, and we are done. �

Corollary 4.1.4. Let v, w ∈W such that v C w. Let

wi0
[a1,b1]

// wi1
[a2,b2]

// · · ·
[aN ,bN ]

// wiN

be a sequence of braid moves such that any of (and hence all of) wi0 , . . . , wiN
are

reduced expressions for w. For each k ∈ {0, 1, . . . , N}, denote ¶vCw(wik
) = jk, and

denote vk as the expression τ(wik
, jk). Let t0, t2, . . . , tm, with t0 < t1 < . . . < tm,

be all the distinct integers in {0, 1, . . . , N − 1} (if any) such that jtr
6∈ [atr+1, btr+1]

for every r ∈ {0, 1, . . . ,m}. For each r ∈ {0, 1, . . . ,m − 1}, if btr+1 < jtr
, then

denote (cr+1, dr+1) = (atr+1, btr+1), and if btr+1 > jtr
, then denote (cr+1, dr+1) =

(atr+1 − 1, btr+1 − 1). We then have the following (possibly empty) valid sequence of
braid moves in Φ(v):

vt0
[c1,d1]

// vt1
[c2,d2]

// · · ·
[cm,dm]

// vtm .

Proof: By the definition of a tag, we have vk ∈ R(v) for each k ∈ {0, 1, . . . , N}.
For each k ∈ {0, 1, . . . , N − 1}, if jk ∈ [ak+1, bk+1], then Proposition 4.1.3 tells us
vk and vk+1 are exactly the same expressions. As for the case jk 6∈ [ak+1, bk+1], we
have k = tr for some r ∈ {0, 1, . . . ,m}, and we either have atr+1 < btr+1 < jtr

or
jtr < atr+1 < btr+1. In either case, we have jtr − 1 is a right boundary coordinate
and jtr + 1 is a left boundary coordinate, so it follows from Corollary 3.3.3 that

vtr

[cr+1,dr+1]
// vtr+1 is a valid sequence. Finally, we observe that vtr+1 and vtr+1

are the same expression for each r ∈ {0, 1, . . . ,m− 1}, therefore the result follows. �

From the results proven above, we have justified all the assertions in our informal
discussion. In particular, for any v, w ∈ W such that v C w, Proposition 4.1.2 tells
us that the tagged letter of any wi ∈ R(w) is not necessarily invariant. Furthermore,
for wi, w

′
i ∈ R(w), even if ¶vCw(wi) = ¶vCw(w′

i) = j for some j ∈ [`(w)], it is not
necessarily true that τ(wi, j) = τ(w′

i, j), as the following example shows:

Example 4.1.5. Let S = {s, a, b, c} such that m(s, a) = 3 and all other pairs of
distinct generators commute. Let w = sasbc and let v = sabc. Note that v C w.
We then have sasbc, bcasa ∈ R(w), where the underlined letters in each reduced
expression is the tagged letter.

However, there is a special case where we do get an invariance of the tagged letter of
a given fixed tag over all possible reduced expressions.

Proposition 4.1.6. Let v, w ∈W such that v C w. If ¶vCw(wi) = ¶vCw(w′
i) = j for

some wi, w
′
i ∈ R(w) and some j ∈ {1, `(w)}, then τ(wi, j) = τ(w′

i, j).

Proof: Denote `(w) = N , and write wi, w
′
i as s1 · · · sN and s′1 · · · s′N respectively.

First consider the case j = `(w). By the definition of a tag, we get s1 · · · sN−1 and
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s′1 · · · s′N−1 represent the same word v, hence by multiplying v−1 on the left to both
s1 · · · sN and s′1 · · · s′N , we get sN and s′N represent the same word, and hence must
be the same generator. The case j = 1 also follows from the same argument. �

Lemma 4.1.7. DR(vs) ⊆ DR(v) ∪ {s} for all v ∈W and all s ∈ S \DR(v).

Proof: Denote w as the word vs. Since s 6∈ DR(v), we get vCvs = w. Denote `(v) = k,
and note that `(w) = k +1. For any s1 · · · sk ∈ R(v), we have s1 · · · sks ∈ R(w), with
¶vCvs(s1 · · · sks) obviously being s by definition. Consequently, Proposition 4.1.6 tells
us τ(w′

i, k + 1) = s for all w′
i ∈ R(w). Now, choose an arbitrary wi ∈ R(vs), and let

j = ¶vCvs(wi). If j < k + 1, then τ(wi, j) ∈ R(v) implies τ(wi, k + 1) ∈ DR(v). If
j = k + 1, then τ(wi, k + 1) = s. It then follows from Lemma 1.3.7 that DR(vs) ⊆
DR(v) ∪ {s}. �

Theorem 4.1.8. Let v ∈ W , let A ∩ DR(v) = ∅, and let w ∈ WA. Then we have
DR(vw) ⊆ DR(v) ∪A.

Proof: We shall prove by induction on `(w). The case `(w) = 0 is trivial, and the case
`(w) = 1 is just a consequence of Lemma 4.1.7. Suppose that for some positive integer
n ≥ 2, the assertion is true for all words w having lengths `(w) < n. Now consider
the case `(w) = n. Let s1 · · · sn ∈ R(w), and denote ui as the expression s1 · · · sn−1,
so that uisn ∈ R(w). By induction hypothesis, we have DR(vui) ⊆ DR(v) ∪ A. By
Lemma 4.1.7, we get DR(vw) = DR(vuisn) ⊆ DR(vui)∪ {sn} ⊆ DR(v)∪A∪ {sn} =
DR(v) ∪A. Therefore, by induction, the assertion follows. �

In view of the fact that DR(w) = DL(w−1) for all w ∈W , there are analogous results
to Lemma 4.1.7 and Theorem 4.1.8 for left descent sets, which we shall record down
for the sake of completeness:

Corollary 4.1.9. DL(sv) ⊆ DL(v) ∪ {s} for all v ∈W and all s ∈ S \DL(v).

Proof: This is the dual of Lemma 4.1.7. �

Corollary 4.1.10. Let v ∈ W , let A ∩DL(v) = ∅, and let w ∈ WA. Then we have
DL(wv) ⊆ DL(v) ∪A.

Proof: This is the dual of Theorem 4.1.8. �

4.2 Dominating Descent Sets

In this section, we introduce the notion of what it means for a set to dominate another
set, and relate to descent sets.

Definition. Let (W,S) be a Coxeter system. For any set A ⊆ S, we define

D(A) = DA
A = {w ∈W : DR(w) = A}

to be the set of all words in W having right descent set A.

Definition. Let (W,S) be a Coxeter system, and let A,B ⊆ S. If there exists an
injection ϕ : D(B) ↪→ D(A) such that w ≤R ϕ(w) for all w ∈ D(B), then we say A
dominates B.
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Definition. Let A,B ⊆ S. If m(a, b) = 2 for all a ∈ A, b ∈ B, then we say the sets
A and B commute.

Theorem 4.2.1. Let (W,S) be a Coxeter system, and let A,B ⊆ S such that A and
B commute, A ∩ B = ∅, and B is finite. Then A ∪ B dominates A, given by the
injection w 7→ ww0(B).

Proof: Choose an arbitrary w ∈ D(A). By definition, we have DR(w) = A, hence
the condition A ∩ B = ∅ is equivalent to DR(w) ∩ B = ∅, so Theorem 4.1.8 implies
DR(ww0(B)) ⊆ A ∪ B. By assumption, we have w ∈ D(A) implies DR(w) ∩ B = ∅.
Since B is finite, the largest element w0(B) in WB exists. Proposition 2.3.6 then
implies w ≤R ww0(B). Note also that Proposition 2.4.6 implies DR(w0(B)) = B,
hence B ⊆ DR(ww0(B)). Finally, since A and B commute, it follows that for every
letter s ∈ DR(w) = A, by commuting with every letter in any expression for w0(B),
we can always get sequence of braid moves with the resultant word ending with
the letter s, thus A ⊆ DR(w). Consequently, we have DR(ww0(B)) = A ∪ B, i.e.
ww0(B) ∈ D(A ∪B), and the result follows. �

Theorem 4.2.2. Let (W,S) be a finite Coxeter system, and let A,B ⊆ S. If A
dominates B, then B ⊆ A.

Proof: Suppose A dominates B, then there exists an injection ϕ : D(B)→ D(A) such
that w ≤R ϕ(w) for all w ∈ D(B). Corollary 2.4.11 implies w

S\B
0 ∈ D(B), hence

ϕ(wS\B
0 ) ∈ D(A) and w

S\B
0 ≤R ϕ(wS\B

0 ) by assumption. For the sake of brevity,
denote v = ϕ(wS\B

0 ). By the Prefix Property (Proposition 2.2.1(iv)), we can write
v = w

S\B
0 · ui for some reduced expression ui. Since v ≤ w0, it also follows from

the Prefix Property that w0 = v · u′i for some reduced expression u′i, so that we get
w0 = w

S\B
0 ·uiu

′
i. From (2.15), we have the unique factorization w0 = w

S\B
0 ·w0(S\B),

which implies uiu
′
i = w0(S \ B), hence u′i ∈ WS\B . Now, let `(u′i) = k, and write

u′i as the reduced expression si1 · · · sik
. For each t ∈ [k], denote vt = vsi1 · · · sit , and

denote v0 = v. By definition, we have sit
6∈ DR(vt−1) for every t ∈ [k], hence applying

Lemma 4.1.7 inductively, we get DR(vk) ⊆ DR(v0) ∪ {si1 , . . . sik
}. Since u′i ∈ WS\B ,

we have {si1 , . . . sik
} ⊆ S \B. Note that v0 = v ∈ D(A) by definition, so DR(v0) = A.

Finally, DR(w0) = S by Proposition 2.4.3, hence we get S ⊆ A∪(S\B), which implies
B ⊆ A. �



Chapter 5

Applications

In this chapter, we give some applications of the new results we have derived in
Chapter 4. Each section gives a very brief exposition of the background needed to
be able to state the corresponding applications. Given the scope of this paper, it
is impossible to develop the theory in each of the expositions in full detail, so our
purpose is merely to give a flavor of how our results on Coxeter systems, in particular
on dominating sets, can be applied to other areas. Often, the reader will be referred
to the references for more details.

In order not to lose track of the main ideas involved in these applications, we shall
assume the reader is familiar with notions of posets, lattices, matroids, simplicial
complexes, order complexes, Cohen-Macaulay complexes, as well as other notions
related to their usage. The unfamiliar reader is urged to see [BB04] for a crash-course
on the relevant definitions and notations.

5.1 Geometric Lattices and Flag h-vectors

In this section, we focus our attention on the standard Coxeter system (Sd+1, S)
that was discussed in Chapter 1.1, with S = {s1, . . . , sd}, si being the transposition
(i, i + 1) for each i ∈ [d]. For brevity, each subset A = {si1 , . . . , sik

} ⊆ S can be
simply denoted as {i1, . . . , ik} ⊆ [d]. With the simplification in notation, we refer to
descents sets of subsets of [d], i.e. for A ⊆ [d], the descent set of A,

D(A) = DA
A = {w ∈ Sd+1 : DR(w) = A}, (5.1)

is the set of all elements in Coxeter group Sd+1 having right descent set A. The notion
of “A dominates B” for sets A,B ⊆ [d] can also be defined analogously, and we shall
implicitly assume that any statements made about descent sets in this section is with
respect to this Coxeter system (Sd+1, S).

Given a finite (d − 1)-dimensional abstract simplicial complex ∆, one of the most

43
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fundamental combinatorial invariants is its f -vector, which is a sequence of integers
(f0, f1, . . . , fd), where for each i ∈ {0, 1, . . . , d}, fi denotes the number of i-dimensional
faces of ∆. The h-vector of ∆ is defined to be the sequence (h0, h1, . . . , hd), where

hi(∆) =
i∑

j=0

(−1)i−j

(
d− j

d− i

)
fj(∆). (5.2)

The h-vector of ∆ is derived from the corresponding f -vector by an invertible trans-
formation, and given the h-vector, we can always derive the f -vector via the following
identity:

fj(∆) =
j∑

i=0

(
d− j

d− i

)
hi(∆). (5.3)

In view of the above correspondence, knowing information about the f -vector is
equivalent to knowing information about the h-vector. One advantage of studying
h-vectors is that certain properties of f -vectors are more easily expressed in terms
of the h-vector. An interesting example is the notion of a convex ear decomposition,
first introduced by Chari [Cha97]:

Definition. Let ∆ be a pure (d − 1)-dimensional simplicial complex. A convex ear
decomposition of ∆ is an ordered sequence ∆1,∆2, . . . ,∆m of pure (d−1)-dimensional
subcomplexes of ∆ satisfying the following:

(i) ∆1 is the boundary complex of a simplicial d-polytope.

(ii) For each j ∈ {2, . . . ,m}, ∆j is a (d − 1)-ball which is a proper subcomplex of
the boundary of a simplicial d-polytope.

(iii) ∆j ∩
(⋃j−1

k=1 ∆k

)
= ∂∆j for j ≥ 2.

(iv) ∆ =
m⋃

k=1

∆k.

∆1 is called the initial subcomplex, while ∆j , for each j ≥ 2, is called an ear of the
decomposition.

The following theorem gives the link between convex ear decompositions and h-
vectors:

Theorem 5.1.1. Let ∆ be a (d − 1)-dimensional simplicial complex. If ∆ has a
convex ear decomposition, then for all i ≤ bd

2c, the h-vector of ∆ satisfies:

hi−1 ≤ hi, (5.4)
hi ≤ hd−i. (5.5)

Proof: See [Cha97]. �

In [NS04], Nyman and Swartz proved that the order complex of a geometric lattice
has a convex ear decomposition, hence an immediate consequence of Theorem 5.1.1
is the following:
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Theorem 5.1.2. Let L be a rank (d+1) geometric lattice and let ∆(L) be the order
complex of L. Then for all i ≤ bd

2c, the h-vector of ∆(L) satisfies the following:

hi−1 ≤ hi, (5.6)
hi ≤ hd−i. (5.7)

Proof: See [NS04]. �

We remark that the theorem in [NS04], which states the order complex of a geometric
lattice has a convex ear decomposition, was later extended by Schweig in [Sch08] to
include rank-selected subposets of geometric lattices, and we have the more general
theorem:

Theorem 5.1.3. Let L be a rank d geometric lattice and let S ⊆ [d− 1]. Then the
order complex ∆(LS) admits a convex ear decomposition.

Proof: See (Theorem 3.13, [Sch08]). �

A very related concept of the h-vectors is the notion of flag h-vectors. Similar to the
case of h-vectors, we first define flag f -vectors, and we then define the flag h-vectors
in terms of the flag f -vectors.

Definition. Let ∆ be a (d− 1)-dimensional complex. A flag of faces in ∆ is a chain
F1 ( F2 ( · · · ( Fk of faces Fi in ∆. For any set S ⊆ [d− 1], a flag is an S-flag if

S = {dim F1,dim F2, . . . ,dim Fk}. (5.8)

Denote fS as the number of S-flags in ∆. We say the function S 7→ fS (for S ⊆ [d−1])
is the flag f-vector of ∆. Also, define

hS =
∑
T⊆S

(−1)|S|−|T |fT . (5.9)

We then say the function S 7→ hS (for S ⊆ [d− 1]) is the flag h-vector of ∆.

The paper by Björner [Bjo80] provides the link between geometric lattices and descent
sets, where he proved that for P a graded poset admitting an R-labelling, hS(P ) is
the number of maximal chains of P with labels having descent set S. (See Theorem
2.7, [Bjo80].) Nyman and Swartz then used Björner’s result to prove the following
theorem:

Theorem 5.1.4. Let L be a rank d geometric lattice and let ∆(L) be the order
complex of L. Let A,B ⊆ [d− 1]. If A dominates B, then the flag h-vector of ∆(L)
satisfies hB ≤ hA.

Proof: See [NS04]. �

The relation of Nyman and Swartz’s work with our work will be discussed in Section
5.4.
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5.2 Supersolvable Lattices with Nowhere-zero Möbius
Function

In his PhD thesis [Sch08], Schweig studied the rank-selected subposets of supersolvable
lattices with nowhere-zero Möbius function. Two notable special cases of such posets
are the super-solvable lattices with nowhere-zero Möbius function, and the rank-
selected subposets of Boolean lattices.

Definition. Let P = {x1, . . . , xd} be a finite poset with |P | = d for some d ∈ Z+.
An order completion of P is a total ordering of its elements, so that xi < xj implies
i < j for all i, j ∈ [d]. An order ideal of P is a subset I ⊆ P such that y ∈ I and x < y
implies x ∈ I. Denote I(P ) as the poset of order ideals of P ordered by inclusion.
A finite lattice L is said to be distributive if there exists a poset P such that L is
isomorphic to I(P ). For any lattice L, L is said to be supersolvable if there exists a
maximal chain cM of L, called the M -chain, such that the sublattice of L generated
by cM and any other (not necessarily maximal) chain of L is a distributive lattice.

Definition. A poset P is said to have a nowhere-zero Möbius function µ if µ(x, y) 6= 0
whenever x, y ∈ P and x ≤ y

Definition. The rank d Boolean lattice, denoted by Bd, is the poset of all subsets of
[d] ordered by inclusion.

Motivated by the application of Chari’s result [Cha97] to geometric lattices as done in
[NS04], Schweig proved the following theorem, hence getting the next two corollaries
as special cases:

Theorem 5.2.1. Let L be a rank d supersolvable lattice with nowhere-zero Möbius
function, and let S ⊆ [d − 1]. Then the order complex ∆(LS) admits a convex ear
decomposition.

Proof: See Section 2 in [Sch08] (the proof of this result is split over a few theorems).
�

Corollary 5.2.2. Let L be a rank d supersolvable lattice with a nowhere-zero Möbius
function. Then the order complex ∆(L) admits a convex ear decomposition.

Proof: This follows immediately from Theorem 5.2.1. �

Corollary 5.2.3. Let S ⊆ [d−1]. The order complex ∆((Bd)S) admits a convex ear
decomposition.

Proof: A Boolean lattice Bd is an example of a supersolvable lattice with a nowhere-
zero Möbius function, so this follows from Theorem 5.2.1. (In fact, it is a distributive
lattice.) See [Sch08] for a discussion on boolean lattices. �

Just as in the case of geometric lattices (Theorem 5.1.2 above), Chari’s result [Cha97]
implies the h-vector inequalities for each of the three classes of posets mentioned
above. Using similar techniques as in [NS04], Schweig concluded the following:

Theorem 5.2.4. Let L be a rank d supersolvable lattice with a nowhere-zero Möbius
function, and let A,B ⊆ [d−1]. If A dominates B, then the flag h-vector of the order
complex ∆(L) satisfies hB ≤ hA.
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Proof: See (Theorem 4.2.2, [Sch08]). �

5.3 Face Posets of Cohen-Macaulay Simplicial Com-
plexes

As a continuation of the previous section, Schweig also studied the face posets of
Cohen-Macaulay simplicial complexes in his PhD thesis [Sch08], where similar to the
other results he obtained, he also proved that the order complexes of such face posets
admit convex ear decomposition, thereby also getting the flag h-vector inequalities
for this class of posets by applying Chari’s result [Cha97]. Although his proof is very
similar to the case of supersolvable lattices with nowhere-zero Möbius function, the
key difference is that he used the additional ingredient of Hibi’s result [Hib88], which
states that the codimension-1 skeleton of a shellable complex is 2-Cohen-Macaulay.

Theorem 5.3.1. Let Σ be a d-dimensional shellable complex with face poset PΣ, and
let S ⊆ [d−1]. Then the order complex ∆((PΣ)S) admits a convex ear decomposition.

Proof: See (Theorem 3.2.1, [Sch08]). [Note that there is a printing error in the
statement of Theorem 3.2.1 in [Sch08]. Σ should be a d-dimensional complex, not a
(d− 1)-dimensional complex as stated in [Sch08].] �

Theorem 5.3.2. Let Σ be a d-dimensional shellable complex with face poset PΣ,
and let A,B ⊆ [d− 1]. If A dominates B, then the flag h-vector of the order complex
∆(PΣ) satisfies hB ≤ hA.

Proof: See (Theorem 4.2.4, [Sch08]). �

Schweig also generalized the above result as follows:

Theorem 5.3.3. Let K be a d-dimensional Cohen-Macaulay simplicial complex with
face poset PK , and let A,B ⊆ [d− 1]. If A dominates B, then the flag h-vector of the
order complex ∆(PK) satisfies hB ≤ hA.

Proof: See (Theorem 4.2.5, [Sch08]). �

As remarked in [Sch08], Theorem 5.3.3 cannot be extended to include posets whose
order complexes are Cohen-Macaulay, and Schweig considered the order complex of
a Gorenstein∗ poset as a counter-example.

5.4 Relation to our Work

As can be seen from the previous three sections, the order complexes corresponding
to geometric lattices, supersolvable lattices with nowhere-zero Möbius function, and
face posets of Cohen-Macaulay simplicial complexes, all have flag h-vectors satisfy
the condition that A dominates B implies hB ≤ hA. In all these results, the main
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argument is the same: Show that the corresponding order complex admits a convex
ear decomposition, apply Chari’s result [Cha97] (Theorem 5.1.1 above), then use the
technique of minimal labelling as discussed in [NS04] to obtain the desired conclusion.

We remark that Chari’s result (Theorem 5.1.1 above) was proven using a deep re-
sult by Stanley [Sta80], which involves the hard Lefschetz Theorem from algebraic
geometry. This means all the results in the previous three sections are indirectly
dependent on the Lefschetz Theorem. It would be very desirable to be able to give a
combinatorial proof to the inequalities of the h-vector and avoid using the Lefschetz
Theorem.

It is then with the motivation of Nyman and Swartz’s result on the relation between
dominating descent sets of order complexes and the flag h-vector inequalities that we
study the descent sets of general Coxeter systems, hoping to get a complete charac-
terization of when A dominates B via a combinatorial proof. If we can get such a
characterization in the general case of Coxeter systems, then applying to the Coxeter
groups of type An, there is an implied combinatorial proof at least for the flag h-vector
inequalities, without having to rely on the Lefschetz Theorem.

Although we did not give a complete characterization in this paper, we did get a
partial characterization in Theorem 4.2.1, where we give an explicit map for A ∪ B
to dominate B, in the case when A,B are disjoint commuting sets, with B finite. We
also remark that we proved in Theorem 4.2.2 that for all finite Coxeter systems, if
A dominates B, then B ⊆ A. This is a generalization of Proposition 5.4 in [NS04],
which is the special case of our result for Coxeter systems of type An.

5.5 Finite Buildings

For all the results discussed in sections 5.1, 5.2 and 5.3, we have analogous results
of A dominates B implies hB ≤ hA for the various classes of lattices and posets.
We observe that in each case, the descent sets involved in A dominating B involve
Coxeter systems of type An. In this section, we shall look at finite buildings.

Definition. Let (W,S) be a Coxeter system. Let Σ(W,S) be the poset of standard
cosets in W , ordered by reverse inclusion. If A ⊆ B as subsets of W , then we
say B is a face of A. We define Σ(W,S) to be the Coxeter complex associated to
the Coxeter system (W,S). The elements of Σ(W,S) are called simplices, and the
maximal simplices (i.e. the singletons {w}) are called chambers and are identified
with their corresponding elements in W they contain.

Definition. The Coxeter complex Σ(W,S) is called spherical if it is finite, or equiv-
alentlt, if W is finite.

Definition. Let Σ(W,S) be a finite Coxeter complex. A finite building of type (W,S)
is a (finite) simplicial complex ∆ that is the union of subcomplexes Σ, called apart-
ments, such that the following hold:

(i) Each apartment Σ is isomorphic to Σ(W,S).
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(ii) For any two faces ρ1 and ρ2 in ∆, there is an apartment Σ containing both of
them.

(iii) If Σ and Σ′ are two apartments containing ρ1 and ρ2, then there is an isomor-
phism Σ→ Σ′ fixing ρ1 and ρ2 pointwise.

In 2006, Swartz considered finite buildings in [Swa06], and extended the ideas involved
in [NS04] to prove the following result:

Theorem 5.5.1. Let (W,S) be a finite Coxeter system. Let A and B be subsets of
S, and assume A dominates B. If ∆ is a finite building of type (W,S), then hB ≤ hA.

Proof: See (Theorem 2.4, [Swa06]) �

This is the first case where the descent sets involved in A dominating B involve finite
Coxeter systems, and not just the specific case of Coxeter systems of type An. It is
known that for Coxeter systems of type An, we have A dominates B implies B ⊆ A,
however it was previously not known whether this result could be extended to general
Coxeter systems. In this paper, we have proven in Theorem 4.2.2 that the result can
indeed be extended to finite Coxeter systems, hence in the assumptions for Theorem
5.5.1, A dominates B necessarily implies B ⊆ A by our result.



Appendix A

Classification of Finite
Irreducible Coxeter Systems

Name Coxeter Diagram
An

(for n ≥ 1) ◦ ◦ ◦ ◦ ◦s1 s2 s3 sn−1 sn
· · ·

Bn

(for n ≥ 2) ◦ ◦ ◦ ◦ ◦s0

4

s1 s2 sn−2 sn−1
· · ·

Dn

(for n ≥ 4) ◦ ◦

◦

◦ ◦ ◦s1

s0

s2 s3 sn−2 sn−1
· · ·

E6 ◦ ◦

◦

◦ ◦ ◦

E7 ◦ ◦

◦

◦ ◦ ◦ ◦

E8 ◦ ◦

◦

◦ ◦ ◦ ◦ ◦

F4 ◦ ◦ ◦ ◦4

G2 ◦ ◦6

H3 ◦ ◦ ◦5

H4 ◦ ◦ ◦ ◦5

I2(m)
(for m ≥ 3) ◦ ◦m

The corresponding Coxeter groups are pairwise non-isomorphic, with exceptions:
I2(3) = A2, I2(4) = B2, I2(6) = G2.
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